全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Musical Expertise and Second Language Learning

DOI: 10.3390/brainsci3020923

Keywords: musical expertise, speech perception, speech production, phonetic contrasts, musicians, non-musicians, second language acquisition

Full-Text   Cite this paper   Add to My Lib

Abstract:

Increasing evidence suggests that musical expertise influences brain organization and brain functions. Moreover, results at the behavioral and neurophysiological levels reveal that musical expertise positively influences several aspects of speech processing, from auditory perception to speech production. In this review, we focus on the main results of the literature that led to the idea that musical expertise may benefit second language acquisition. We discuss several interpretations that may account for the influence of musical expertise on speech processing in native and foreign languages, and we propose new directions for future research.

References

[1]  Golestani, N.; Rosen, S.; Scott, S.K. Native-language benefit for understanding speech-in-noise: The contribution of semantics. Biling. Lang. Cogn. 2009, 12, 385–392, doi:10.1017/S1366728909990150.
[2]  Flege, J.E.; MacKay, I.R.A. Perceiving Vowels in a Second Language. Stud. Second Lang. Acquis. 2004, 26, 1–34, doi:10.1017/S0272263104261010.
[3]  Best, C.T.; McRoberts, G.W.; Goodell, E. American listeners’ perception of non-native consonant contrasts varying in perceptual assimilation to English phonology. J. Acoust. Soc. Am. 2001, 109, 775–794, doi:10.1121/1.1332378.
[4]  Flege, J.E. Second Language Speech Learning Theory, Findings, and Problems. In Speech Perception and Linguistic Experience: Issues in Cross-Language Research; York Press: Timonium, MD, USA, 1995.
[5]  Birdsong, D. Interpreting age effects in second language acquisition. In Handbook of Bilingualism: Psycholinguistic Approaches; Kroll, J.F., de Groot, A.M.B., Eds.; Oxford University Press: New York, NY, USA, 2005; pp. 109–127.
[6]  Moyer, A. Ultimate attainment in L2 phonology. Stud. Second Lang. Acquis. 1999, 21, 81–108, doi:10.1017/S0272263199001035.
[7]  Majerus, S.; Poncelet, M.; van der Linden, M.; Weekes, B.S. Lexical learning in bilingual adults: The relative importance of short-term memory for serial order and phonological knowledge. Cognition 2008, 107, 395–419, doi:10.1016/j.cognition.2007.10.003.
[8]  Miyake, A.; Friedman, N.P. Individual differences in second language proficiency: Working memory as language aptitude. In Foreign Language Learning. Psycholinguistic Studies on Training and Retention; Healy, A.F., Bourne, L.E., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1998; pp. 339–364.
[9]  Guion, S.G.; Pederson, E. Investigating the role of attention in phonetic learning. In Language Experience in Second Language Speech Learning; Bohn, O.-S., Munro, M.J., Eds.; John Benjamins Publishing: Amsterdam, The Netherland, 2007; pp. 57–77.
[10]  Segalowitz, N. Individual differences in second language acquisition. In Tutorials in Bilingualism:Psycholinguistic Perspectives; de Groot, A.M.B., Kroll, J.F., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1997; pp. 85–112.
[11]  Slevc, L.R.; Miyake, A. Individual differences in second language proficiency: Does musical ability matter? Psychol. Sci. 2006, 17, 675–681, doi:10.1111/j.1467-9280.2006.01765.x.
[12]  Besson, M.; Chobert, J.; Marie, C. Transfer of training between music and speech: Common processing, attention and memory. Front. Psychol. 2011, 2, 94.
[13]  Patel, A.D. Music, Language, and the Brain; Oxford University Press: New York, NY, USA, 2008.
[14]  Patel, A.D. Music, biological evolution, and the brain. In Emerging Disciplines; Bailar, M., Ed.; Rice University Press: TX, USA, 2010; pp. 91–144.
[15]  Besson, M.; Sch?n, D.; Moreno, S.; Santos, A.; Magne, C. Influence of musical expertise and musical training on pitch processing in music and language. Restor. Neurol. Neurosci. 2007, 25, 399–410.
[16]  Koelsch, S.; Gunter, T.C.; Wittfoth, M.; Sammler, D. Interaction between syntax processing in language and in music: An ERP study. J. Cogn. Neurosci. 2005, 17, 1565–1577.
[17]  Maess, B.; Koelsch, S.; Gunter, T.C.; Friederici, A.D. Musical syntax is processed in Broca’s area: An MEG study. Nat. Neurosci. 2001, 4, 540–545.
[18]  Patel, A.D.; Gibson, E.; Ratner, J.; Besson, M.; Holcomb, P.J. Processing syntactic relations in language and music: An event-related potential study. J. Cogn. Neurosci. 1998, 10, 717–733.
[19]  Jentschke, S.; Koelsch, S.; Friederici, A.D. Investigating the relationship of music and language in children: Influences of musical training and language impairment. In The Neurosciences and Music II. from Perception to Performance; Avanzini, G., Lopez, L., Koelsch, S., Majno, M., Eds.; Annals of the New York Academy of Sciences Vol. 1060; Wiley: New York, NY, USA, 2005; pp. 231–242.
[20]  Koelsch, S.; Kasper, E.; Sammler, D.; Schulze, K.; Gunter, T.; Friederici, A.D. Music, language and meaning: Brain signatures of semantic processing. Nat. Neurosci. 2004, 7, 302–307.
[21]  Kraus, N.; Chandrasekaran, B. Music training for the development of auditory skills. Nat. Rev. Neurosci. 2010, 11, 599–605, doi:10.1038/nrn2882.
[22]  Strait, D.L.; Kraus, N. Playing Music for a Smarter Ear: Cognitive, Perceptual and Neurobiological Evidence. Music Percept. 2011, 29, 133–146, doi:10.1525/mp.2011.29.2.133.
[23]  Slevc, L.R. Language and music: Sound, structure, and meaning. WIREs Cogn. Sci. 2012, 3, 483–492, doi:10.1002/wcs.1186.
[24]  Marques, C.; Moreno, S.; Luís Castro, S.; Besson, M. Musicians detect pitch violation in a foreign language better than nonmusicians: Behavioral and electrophysiological evidence. J. Cogn. Neurosci. 2007, 19, 1453–1463.
[25]  Marie, C.; Delogu, F.; Lampis, G.; Olivetti Belardinelli, M.; Besson, M. Influence of Musical Expertise on Segmental and Tonal Processing in Mandarin Chinese. J. Cogn. Neurosci. 2011, 23, 2701–2715.
[26]  Milovanov, R.; Huotilainen, M.; V?lim?ki, V.; Esquef, P.A.A.; Tervaniemi, M. Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence. Brain Res. 2008, 1194, 81–89.
[27]  Milovanov, R.; Pietil?, P.; Tervaniemi, M.; Esquef, P.A.A. Foreign language pronunciation skills and musical aptitude: a study of Finnish adults with higher education. Learn. Individ. Diff. 2010, 20, 56–60, doi:10.1016/j.lindif.2009.11.003.
[28]  Fran?ois, C.; Sch?n, D. Musical expertise boosts implicit learning of both musical and linguistic structures. Cereb. Cortex 2011, 21, 2357–2365, doi:10.1093/cercor/bhr022.
[29]  Fran?ois, C.; Chobert, J.; Besson, M.; Sch?n, D. Music Training for the Development of Speech Segmentation. Cereb. Cortex 2012, doi:10.1093/cercor/bhs180.
[30]  Xu, Y.; Wang, Q.E. Pitch targets and their realization: Evidence from Mandarin Chinese. Speech Commun. 2001, 33, 319–337.
[31]  Brandt, A.K.; Gebrian, M.; Slevc, L.R. Music and early language acquisition. Front. Psychol. 2012, 3, 327.
[32]  Sch?n, D.; Magne, C.; Besson, M. The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology 2004, 41, 341–349, doi:10.1111/1469-8986.00172.x.
[33]  Magne, C.; Sch?n, D.; Besson, M. Musician children detect pitch violations in both music and language better than nonmusician children: behavioral and electrophysiological approaches. J. Cogn. Neurosci. 2006, 18, 199–211, doi:10.1162/jocn.2006.18.2.199.
[34]  Moreno, S.; Marques, C.; Santos, A.; Santos, M.; Castro, S.L.; Besson, M. Musical training influences linguistic abilities in 8-year-old children: More evidence for brain plasticity. Cereb. Cortex 2009, 19, 712, doi:10.1093/cercor/bhn120.
[35]  Ott, C.G.M.; Langer, N.; Oechslin, M.; Meyer, M.; J?ncke, L. Processing of voiced and unvoiced acoustic stimuli in musicians. Front. Psychol. 2011, 2, 195.
[36]  Elmer, S.; Meyer, M.; J?ncke, L. Neurofunctional and behavioral correlates of phonetic and temporal categorization in musically trained and untrained subjects. Cereb. Cortex 2012, 22, 650–658, doi:10.1093/cercor/bhr142.
[37]  Alexander, J.A.; Wong, P.C.M.; Bradlow, A.R. Lexical tone perception in musicians and non-musicians. In Proceedings of the 9th European Conference on Speech Communication and Technology, Lisbon, Portugal, 2005.
[38]  Delogu, F.; Lampis, G.; Belardinelli, M.O. Music-to-language transfer effect: May melodic ability improve learning of tonal languages by native nontonal speakers? Cogn. Process. 2006, 7, 203–207.
[39]  Delogu, F.; Lampis, G.; Belardinelli, M.O. From melody to lexical tone: Musical ability enhances specific aspects of foreign language perception. Eur. J. Cogn. Psychol. 2010, 22, 46–61.
[40]  Gottfried, T.L.; Riester, D. Relation of pitch glide perception and Mandarin tone identification. J. Acoust. Soc. Am. 2000, 108, 2604.
[41]  Lee, C.Y.; Hung, T.H. Identification of Mandarin tones by English-speaking musicians and non-musicians. J. Acoust. Soc. Am. 2008, 124, 3235–3248, doi:10.1121/1.2990713.
[42]  Wong, P.C.M.; Skoe, E.; Russo, N.M.; Dees, T.; Kraus, N. Musical experience shaps human brainstem encoding of linguistic pitch patterns. Nat. Neurosci. 2007, 10, 420–422.
[43]  Chandrasekaran, B.; Kraus, N.; Wong, P.C.M. Human inferior colliculus activity relates to individual differences in spoken language learning. J. Neurophysiol. 2012, 107, 1325–1336, doi:10.1152/jn.00923.2011.
[44]  Fujioka, T.; Ross, B.; Kakigi, R.; Pantev, C.; Trainor, L.J. One year of musical training affects development of auditory cortical-evoked fields in young children. Brain 2006, 129, 2593.
[45]  Duncan-Johnson, C.C.; Donchin, E. On quantifying surprise: The variation of event-related potentials with subjective probability. Psychophysiology 1977, 14, 456–467, doi:10.1111/j.1469-8986.1977.tb01312.x.
[46]  Picton, T.W. The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 1992, 9, 456–479.
[47]  Magne, C.; Astésano, C.; Aramaki, M.; Ystad, S.; Kronland-Martinet, R.; Besson, M. Influence of syllabic lengthening on semantic processing in spoken french: Behavioral and electrophysiological evidence. Cereb. Cortex 2007, 17, 2659–2668, doi:10.1093/cercor/bhl174.
[48]  Marie, C.; Magne, C.; Besson, M. Musicians and the metric structure of words. J. Cogni. Neurosci. 2011, 23, 294–305, doi:10.1162/jocn.2010.21413.
[49]  Pallone, G.; Boussard, P.; Daudet, L.; Guillemain, P.; Kronland-Martinet, R.A. Wavelet Based Method for Audio Video Synchronization in Broadcasting Applications. In Proceedings of the DAFX’99, Trondheim, Norway, 1999.
[50]  Sadakata, M.; Sekiayama, K. Enhanced perception of various linguistic features by musicians: A cross-linguistic study. Acta Psychol. 2011, 138, 1–10, doi:10.1016/j.actpsy.2011.03.007.
[51]  Cutler, A. The perception of rhythm in language. Cognition 1994, 50, 79–81, doi:10.1016/0010-0277(94)90021-3.
[52]  Cutler, A.; Otake, T. Mora or phoneme? Further evidence for language-specific listening. J. Mem. Lang. 1994, 3, 824–844, doi:10.1006/jmla.1994.1039.
[53]  Iverson, P.; Evans, B.G. Learning English vowels with different first-language vowel systems: Perception of format targets, format movement, and duration. J. Acoust. Soc. Am. 2007, 122, 2842–2854, doi:10.1121/1.2783198.
[54]  Chobert, J.; Marie, C.; Fran?ois, C.; Sch?n, D.; Besson, M. Enhanced passive and active processing of syllables in musician children. J. Cogn. Neurosci. 2011, 23, 3874–3887, doi:10.1162/jocn_a_00088.
[55]  Phillips, C.; Pellathy, T.; Marantz, A.; Yellin, E.; Wexler, K.; Poeppel, D.; McGinnis, M.; et al. Auditory cortex accesses phonological categories: an MEG mismatch study. J. Cogn. Neurosci. 2000, 12, 1038–1055.
[56]  Strait, D.L.; Kraus, N.; Parbery-Clark, A.; Ashley, R. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance. Hear. Res. 2010, 261, 22–29, doi:10.1016/j.heares.2009.12.021.
[57]  Bettoni-Techio, M.; Rauber, A.S.; Koerich, R.D. Perception and production of word-final alveolar stops by Brazilian Portuguese learners of English. In Proceedings of Interspeech 2007, Antwerp, Belgium, 2007; pp. 2293–2296.
[58]  Gottfried, T.L.; Staby, A.M.; Ziemer, C.J. Musical experience and Mandarin tone discrimination and imitation. J. Acoust. Soc. Am. 2004, 115, 2545.
[59]  Gottfried, T.L.; Ouyang, G.Y.H. Production of Mandarin tone contrasts by musicians and non-musicians. J. Acoust. Soc. Am. 2005, 118, 2025.
[60]  Hickok, G.; Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 2007, 8, 393–402, doi:10.1038/nrn2113.
[61]  Saffran, J.R.; Aslin, R.N.; Newport, E.L. Statistical learning by 8-month-old infants. Science 1996, 274, 1926–1928, doi:10.1126/science.274.5294.1926.
[62]  Saffran, J.R.; Senghas, A.; Trueswell, J.C. The acquisition of language in children. Proc. Natl. Acad. Sci. USA 2001, 98, 12874–12875.
[63]  Saffran, J.R.; Newport, E.L.; Aslin, R.N. Word segmentation: The role of distributional cues. J. Mem. Lang. 1996, 35, 606–621, doi:10.1006/jmla.1996.0032.
[64]  Aslin, R.N.; Saffran, J.R.; Newport, E.L. Computation of conditional probability statistics by 8-month-old infants. Psychol. Sci. 1998, 9, 321–324, doi:10.1111/1467-9280.00063.
[65]  Kuhl, P.K. Early language acquisition: Cracking the speech code. Nat. Rev. Neurosci. 2004, 207, 203–205.
[66]  Gervain, J.; Macagno, F.; Cogoi, S.; Pe?a, M.; Mehler, J. The neonate brain detects speech structure. Proc Natl. Acad. Sci. USA 2008, 105, 14222–14227.
[67]  Teinonen, T.; Fellman, V.; N??t?nen, R.; Alku, P.; Huotilainen, M. Statistical language learning in neonates revealed by event-related brain potentials. BMC Neurosci. 2009, 13, 10–21.
[68]  Tillmann, B.; McAdams, S. Implicit Learning of musical timbre sequences: statistical regularities confronted with acoustical (dis)similarities. J. Exp. Psychol. Learn. Mem. Cogn. 2004, 30, 1131–1142, doi:10.1037/0278-7393.30.5.1131.
[69]  Saffran, J.R.; Johnson, E.; Aslin, R.N.; Newport, E.L. Statistical learning of tone sequences by human infants and adults. Cognition 1999, 70, 27–52, doi:10.1016/S0010-0277(98)00075-4.
[70]  Sch?n, D.; Boyer, M.; Moreno, S.; Besson, M.; Peretz, I.; Kolinsky, R. Song as an aid for language acquisition. Cognition 2008, 106, 975–983, doi:10.1016/j.cognition.2007.03.005.
[71]  Wechsler, D. Wechsler Intelligence Scale for Children—Fourth Edition (WISC-IV); Psychological Corporation: San Antonio, TX, USA, 2003.
[72]  Raven, J.C.; Corporation, P.; Lewis, H.K. Coloured Progressive Matrices: Sets A, AB, B; Oxford Psychologist Press: London, UK, 1962.
[73]  Korkman, M.; Kirk, U.; Kemp, S. NEPSY: A Developmental Neuropsychological Assessment; Psychological Corporation: San Antonio, TX, USA, 1998.
[74]  Jacquier-Roux, M.; Valdois, S.; Zorman, M.O. Outil de Dépistage des Dyslexies; Cogni-Sciences: Grenoble, France, 2005.
[75]  Lahav, A.; Saltzman, E.; Schlaug, G. Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. J. Neurosci. 2007, 27, 308–314, doi:10.1523/JNEUROSCI.4822-06.2007.
[76]  Hyde, K.L.; Lerch, J.; Norton, A.; Forgeard, M.; Winner, E.; Evans, A.C.; Schlaug, G. Musical training shapes structural brain development. J. Neurosci. 2009, 29, 3019, doi:10.1523/JNEUROSCI.5118-08.2009.
[77]  Pelucchi, B.; Hay, J.F.; Saffran, J.R. Learning in reverse: Eight-month-old infants track backwards transitional probabilities. Cognition 2009, 113, 244–247, doi:10.1016/j.cognition.2009.07.011.
[78]  Patel, A.D. Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Front. Psychol. 2011, 2, 142, doi:10.3389/fpsyg.2011.00142.
[79]  Degé, F.; Schwarzer, G. The effect of a music program on phonological awareness in preschoolers. Front. Psychol. 2011, 2, 24.
[80]  Tervaniemi, M.; Kruck, S.; De Baene, W.; Schr?ger, E.; Alter, K.; Friederici, A.D. Top-down modulation of auditory processing: Effects of sound context, musical expertise and attentional focus. Eur. J. Neurosci. 2009, 30, 1636–1642, doi:10.1111/j.1460-9568.2009.06955.x.
[81]  Baddeley, A.D.; Papagno, C.; Vallar, G. When long-term learning depends on short-term storage. J. Mem. Lang. 1988, 27, 586–596, doi:10.1016/0749-596X(88)90028-9.
[82]  Papagno, C.; Valentine, T.; Baddeley, A.D. Phonological short-term memory and foreign-language vocabulary learning. J. Mem. Lang. 1991, 30, 331–347, doi:10.1016/0749-596X(91)90040-Q.
[83]  Ellis, N.C.; Sinclair, S.G. Working memory in the acquisition of vocabulary and syntax: Putting language in good order. Q. J. Exp. Psychol. 1996, 49, 234–250.
[84]  Fortkamp, M.B.M. Working memory capacity and aspects of L2 speech production. Commun. Cogn. 1999, 32, 259–295.
[85]  Kormos, J.; Sáfár, A. Phonological short-term membory, working memory and foreign language performance in intensive language learning. Biling. Lang. Cogn. 2008, 11, 261–271.
[86]  Chan, A.S.; Ho, Y.C.; Cheung, M.C. Music training improves verbal memory. Nature 1998, 396, 128, doi:10.1038/24075.
[87]  Ho, Y.; Cheung, M.; Chan, A. Music training improves verbal but not visual memory: Cross sectional and longitudinal explorations in children. Neuropsychology 2003, 17, 439–450, doi:10.1037/0894-4105.17.3.439.
[88]  Tierney, A.T.; Bergeson-Dana, T.; Pisoni, D.B. Effects of early musical experience on auditory sequence memory. Empir. Musicol. Rev. 2008, 3, 117–186.
[89]  Pallesen, K.J.; Brattico, E.; Bailey, C.J.; Korvenoja, A.; Koivisto, J.; Gjedde, A.; Carlson, S. Cognitive control in auditory working memory is enhanced in musicians. PLoS One 2010, 5, e11120.
[90]  Parbery-Clark, A.; Skoe, E.; Lam, C.; Kraus, N. Musician enhancement for speech in noise. Ear Hear. 2009, 30, 653–661, doi:10.1097/AUD.0b013e3181b412e9.
[91]  Parbery-Clark, A.; Strait, D.L.; Anderson, S.; Hittner, E.; Kraus, N. Musical Experience and the Aging Auditory System: Implication for Cognitive Abilities and Hearning Speech in Noise. PLoS One 2011, 6, e18082.
[92]  Brandler, S.; Rammsayer, T.H. Differences in mental abilities between musicians and non-musicians. Psychol. Music 2003, 31, 123–138, doi:10.1177/0305735603031002290.
[93]  Jakobson, L.S.; Cuddy, L.L.; Kilgour, A.R. Time tagging: A key to musicians’ superior memory. Music Percept. 2003, 20, 307–313, doi:10.1525/mp.2003.20.3.307.
[94]  Gaab, N.; Schlaug, G. Musicians differ from nonmusicians in brain activation despite performance matching. Ann. N. Y. Acad. Sci. 2003, 999, 385–388, doi:10.1196/annals.1284.048.
[95]  Janata, P.; Tillman, B.; Bharucha, J.J. Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn. Affect. Behav. Neurosci. 2002, 2, 121–140, doi:10.3758/CABN.2.2.121.
[96]  Schulze, K.; Gaab, N.; Schlaug, G. Perceiving pitch absolutely: comparing absolute and relative pitch possessors in a pitch memory task. BMC Neurosci. 2009, 10, 106, doi:10.1186/1471-2202-10-106.
[97]  Brown, S.; Martinez, M.J. Activation of premotor vocal areas during musical discrimination. Brain Cogn. 2007, 63, 59–69, doi:10.1016/j.bandc.2006.08.006.
[98]  Brown, S.; Martinez, M.J.; Parsons, L. M. Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport 2004, 15, 2033–2037, doi:10.1097/00001756-200409150-00008.
[99]  Gordon, R.; Sch?n, D.; Magne, C.; Astésano, C.; Besson, M. Words and melody are intertwined in perception of sung words: EEG and behavioral evidence. PLoS One 2010, 5, 9889.
[100]  Hickok, G.; Buchsbaum, B.; Humphries, C.; Muftuler, T. Auditory-motor interaction revealed by fMRI: Speech, music, and working memory in area Spt. J. Cogn. Neuroscie. 2003, 15, 673–682.
[101]  Koelsch, S.; Schulze, K.; Sammler, D.; Fritz, T.; Muller, K.; Gruber, O. Functional architecture of verbal and tonal working memory: An fMRI study. Hum. Brain Mapp. 2009, 30, 859–873, doi:10.1002/hbm.20550.
[102]  Ohnishi, T.; Matsuda, H.; Asada, T.; Aruga, M.; Hirakata, M.; Nishikawa, M.; Katoh, A.; Imabayashi, E. Functional anatomy of musical perception in musicians. Cereb. Cortex 2001, 11, 754–760, doi:10.1093/cercor/11.8.754.
[103]  Sch?n, D.; Gordon, R.; Campagne, A.; Magne, C.; Astesano, C.; Anton, J.L.; Besson, M. More evidence for similar cerebral networks in language, music and song perception. Neuroimage 2010, 51, 450–461, doi:10.1016/j.neuroimage.2010.02.023.
[104]  Hickok, G. Computational neuroanatomy of speech production. Nat. Rev. Neurosci. 2012, 13, 135–145, doi:10.1038/nrg3118.
[105]  Gelfand, J.; Bookheimer, S. Dissociating neural mechanisms of temporal sequencing and processing phonemes. Neuron 2003, 38, 831–842, doi:10.1016/S0896-6273(03)00285-X.
[106]  Golestani, N.; Zatorre, R.J. Learning new sounds of speech: Reallocation of neural substrates. NeuroImage 2004, 21, 494–506, doi:10.1016/j.neuroimage.2003.09.071.
[107]  Sepp?nen, M.; H?m?l?inen, J.; Pesonen, A.K.; Tervaniemi, M. Music Training Enhances Rapid Neural Plasticity of N1 and P2 Source Activation for Unattended Sounds. Front. Hum. Neurosci. 2012, 6, 43.
[108]  Sepp?nen, M.; Pesonen, A.K.; Tervaniemi, M. Music training enhances the rapid plasticity of P3a/P3b event-related brain potentials for unattended and attended target sounds. Attent. Percept. Psychophys. 2012, 74, 600–612, doi:10.3758/s13414-011-0257-9.
[109]  Fran?ois, C.; Tillmann, B.; Sch?n, D. Cognitive and methodological consideration on the effects of musical expertise on speech segmentation. Ann. N. Y. Acad. Sci. 2012, 1252, 108–115.
[110]  Fl?el, A.; de Vries, M.; Scholz, J.; Breitenstein, C.; Johansen-Berg, H. White matter integrity in the vicinity of Broca’s area predicts grammar learning success. NeuroImage 2009, 47, 1974–1981.
[111]  Conway, C.M.; Pisoni, D.B.; Kronenberger, W.G. The importance of sound for cognitive sequencing: The auditory scaffolding hypothesis. Curr. Dir. Psychol. Sci. 2009, 18, 275–279, doi:10.1111/j.1467-8721.2009.01651.x.
[112]  Musacchia, G.; Strait, D.; Kraus, N. Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hear. Res. 2008, 241, 34–42, doi:10.1016/j.heares.2008.04.013.
[113]  Wong, P.C.M.; Perrachione, T.K.; Parrish, T.B. Neural characteristics of successful and less successful speech and word learning in adults. Hum. Brain Mapp. 2007, 28, 995–1006, doi:10.1002/hbm.20330.
[114]  Musacchia, G.; Sams, M.; Skoe, E.; Kraus, N. Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc. Natl. Acad. Sci. USA 2007, 104, 15894, doi:10.1073/pnas.0701498104.
[115]  Parbery-Clark, A.; Tierney, A.; Strait, D.L.; Kraus, N. Musicians have fine-tuned neural distinction of speech syllables. Neuroscience 2012, 219, 111–119, doi:10.1016/j.neuroscience.2012.05.042.
[116]  Chobert, J.; Fran?ois, C.; Velay, J.L.; Besson, M. Twelve months of active musical training in 8 to 10 year old children enhances the preattentive processing of syllabic duration and Voice Onset Time. Cereb. Cortex 2012, doi:10.1093/cercor/bhs37.
[117]  Hornickel, J.; Anderson, S.; Skoe, E.; Yi, H.; Kraus, N. Subcortical representation of speech fine structure related to reading ability. NeuroReport 2012, 23, 6–9, doi:10.1097/WNR.0b013e32834d2ffd.
[118]  Hornickel, J.; Kraus, N. Unstable representation of sound: A biological marker of dyslexia. J. Neurosci. 2013, 33, 3500–3504, doi:10.1523/JNEUROSCI.4205-12.2013.
[119]  Chobert, J.; Fran?ois, C.; Habib, M.; Besson, M. Deficit in the preattentive processing of syllabic duration and VOT in children with dyslexia. Neuropsychologia 2012, 50, 2044–2055, doi:10.1016/j.neuropsychologia.2012.05.004.
[120]  Goswami, U. A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci. 2011, 15, 3–10, doi:10.1016/j.tics.2010.10.001.
[121]  Bogliotti, C.; Serniclaes, W.; Messaoud-Galusi, S.; Sprenger-Charolles, L. Discrimination of speech sounds by children with dyslexia: Comparisons with chronological age and reading level controls. J. Exp. Child Psychol. 2008, 101, 137–155, doi:10.1016/j.jecp.2008.03.006.
[122]  Serniclaes, W.; Heghe, S.V.; Mousty, P.; Carré, R.; Sprenger-Charolles, L. Allophonic mode of speech perception in dyslexia. J. Exp. Child Psychol. 2004, 87, 336–361, doi:10.1016/j.jecp.2004.02.001.
[123]  Ho, C.S.H.; Fong, K.M. Do Chinese Dyslexic Children Have Difficulties Learning English as a Second Language? J. Psycholinguist. Res. 2005, 34, 603–618, doi:10.1007/s10936-005-9166-1.
[124]  Lundberg, I. Second language learning and reading with the additional load of dyslexia. Ann. Dyslexia 2002, 52, 165–187, doi:10.1007/s11881-002-0011-z.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133