全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cancers  2013 

Investigation of siRNA Nanoparticle Formation Using Mono-Cationic Detergents and Its Use in Gene Silencing in Human HeLa Cells

DOI: 10.3390/cancers5041413

Keywords: mono-cationic detergent, gene silencing, siRNA delivery, nanoparticle, multifunctional envelope-type nano device (MEND)

Full-Text   Cite this paper   Add to My Lib

Abstract:

The focus of recent research has been on the development of siRNA vectors to achieve an innovative gene therapy. Most of the conventional vectors are siRNA nanoparticles complexed with cationic polymers and liposomes, making it difficult to release siRNA. In this study, we report on the use of MCD, a quaternary ammonium salt detergent containing a long aliphatic chain (L-chain) as an siRNA complexation agent using human HeLa cells (a model cancer cell). We prepared siRNA nanoparticles using various MCDs, and measured the diameters and zeta-potentials of the particles. The use of an MCD with a long L-chain resulted in the formation of a positively charged nanoparticle. In contrast, a negatively charged nanoparticle was formed when a MCD with a short L-chain was used. We next evaluated the gene silencing efficiency of the nanoparticles using HeLa cells expressing the luciferase protein. The results showed that the siRNA/MCD nanoparticles showed a higher gene silencing efficiency than Lipofectamine 2000. We also found that the efficiency of gene silencing is a function of the length of the alkyl chain in MCD and zeta-potential of the siRNA/MCD nanoparticles. Such information provides another viewpoint for designing siRNA vectors.

References

[1]  Nakamura, Y.; Kogure, K.; Futaki, S.; Harashima, H. Octaarginine-modified multifunctional envelope-type nano device for siRNA. J. Control. Release 2007, 119, 360–367, doi:10.1016/j.jconrel.2007.03.010.
[2]  Takemoto, H.; Ishii, A.; Miyata, K.; Nakanishi, M.; Oba, M.; Ishii, T.; Yamasaki, Y.; Nishiyama, N.; Kataoka, K. Polyion complex stability and gene silencing efficiency with a siRNA-grafted polymer delivery system. Biomaterials 2010, 31, 8097–8105, doi:10.1016/j.biomaterials.2010.07.015.
[3]  Zintchenko, A.; Philipp, A.; Dehshahri, A.; Wagner, E. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug. Chem. 2008, 19, 1448–1455, doi:10.1021/bc800065f.
[4]  Sato, Y.; Hatakeyama, H.; Sakurai, Y.; Hyodo, M.; Akita, H.; Harashima, H. A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J. Control. Release 2012, 163, 267–276, doi:10.1016/j.jconrel.2012.09.009.
[5]  Semple, S.C.; Akinc, A.; Chen, J.; Sandhu, A.P.; Mui, B.L.; Cho, C.K.; Sah, D.W.; Stebbing, D.; Crosley, E.J.; Yaworski, E.; et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010, 28, 172–176, doi:10.1038/nbt.1602.
[6]  Akinc, A.; Zumbuehl, A.; Goldberg, M.; Leshchiner, E.S.; Busini, V.; Hossain, N.; Bacallado, S.A.; Nguyen, D.N.; Fuller, J.; Alvarez, R.; et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 2008, 26, 561–569, doi:10.1038/nbt1402.
[7]  Mao, S.; Neu, M.; Germershaus, O.; Merkel, O.; Sitterberg, J.; Bakowsky, U.; Kissel, T. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjug. Chem. 2006, 17, 1209–1218, doi:10.1021/bc060129j.
[8]  Godbey, W.T.; Mikos, A.G. Recent progress in gene delivery using non-viral transfer complexes. J. Control. Release 2001, 72, 115–125, doi:10.1016/S0168-3659(01)00267-X.
[9]  Yang, Y.; Xu, Z.; Chen, S.; Gao, Y.; Gu, W.; Chen, L.; Pei, Y.; Li, Y. Histidylated cationic polyorganophosphazene/DNA self-assembled nanoparticles for gene delivery. Int. J. Pharm. 2008, 353, 277–282, doi:10.1016/j.ijpharm.2007.11.041.
[10]  Osada, K.; Oshima, H.; Kobayashi, D.; Doi, M.; Enoki, M.; Yamasaki, Y.; Kataoka, K. Quantized folding of plasmid DNA condensed with block catiomer into characteristic rod structures promoting transgene efficacy. J. Am. Chem. Soc. 2010, 132, 12343–12348, doi:10.1021/ja102739b.
[11]  Dias, R.S.; Pais, A.A.C.C.; Miguel, M.G.; Lindman, B. Modeling of DNA compaction by polycations. J. Chem. Phys. 2003, 119, 8150–8157, doi:10.1063/1.1609985.
[12]  Liu, Y.; Wenning, L.; Lynch, M.; Reineke, T.M. New poly(D-glucaramidoamine)s induce DNA nanoparticle formation and efficient gene delivery into mammalian cells. J. Am. Chem. Soc. 2004, 126, 7422–7423, doi:10.1021/ja049831l.
[13]  Brumbach, J.H.; Lin, C.; Yockman, J.; Kim, W.J.; Blevins, K.S.; Engbersen, J.F.; Feijen, J.; Kim, S.W. Mixtures of poly(triethylenetetramine/cystamine bisacrylamide) and poly(triethylenetetramine/cystamine bisacrylamide)-g-poly(ethylene glycol) for improved gene delivery. Bioconjug. Chem. 2010, 21, 1753–1761, doi:10.1021/bc900522x.
[14]  Vijayanathan, V.; Thomas, T.; Thomas, T.J. DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry 2002, 41, 14085–14094, doi:10.1021/bi0203987.
[15]  Hama, S.; Akita, H.; Iida, S.; Mizuguchi, H.; Harashima, H. Quantitative and mechanism-based investigation of post-nuclear delivery events between adenovirus and lipoplex. Nucleic Acids Res. 2007, 35, 1533–1543, doi:10.1093/nar/gkl1165.
[16]  Hama, S.; Akita, H.; Ito, R.; Mizuguchi, H.; Hayakawa, T.; Harashima, H. Quantitative comparison of intracellular trafficking and nuclear transcription between adenoviral and lipoplex systems. Mol. Ther. 2006, 13, 786–794, doi:10.1016/j.ymthe.2005.10.007.
[17]  Yamada, Y.; Nomura, T.; Harashima, H.; Yamashita, A.; Katoono, R.; Yui, N. Intranuclear DNA release is a determinant of transfection activity for a non-viral vector: Biocleavable polyrotaxane as a supramolecularly dissociative condenser for efficient intranuclear DNA release. Biol. Pharm. Bull. 2010, 33, 1218–1222, doi:10.1248/bpb.33.1218.
[18]  Yamada, Y.; Nomura, T.; Harashima, H.; Yamashita, A.; Yui, N. Post-nuclear gene delivery events for transgene expression by biocleavable polyrotaxanes. Biomaterials 2012, 33, 3952–3958, doi:10.1016/j.biomaterials.2012.01.049.
[19]  Yamada, Y.; Hashida, M.; Nomura, T.; Harashima, H.; Yamasaki, Y.; Kataoka, K.; Yamashita, A.; Katoono, R.; Yui, N. Different mechanisms for nanoparticle formation between pDNA and siRNA using polyrotaxane as the polycation. Chemphyschem 2012, 13, 1161–1165, doi:10.1002/cphc.201100800.
[20]  Suzuki, R.; Yamada, Y.; Harashima, H. Development of small, homogeneous pDNA particles condensed with mono-cationic detergents and encapsulated in a multifunctional envelope-type nano device. Biol. Pharm. Bull. 2008, 31, 1237–1243, doi:10.1248/bpb.31.1237.
[21]  Kogure, K.; Moriguchi, R.; Sasaki, K.; Ueno, M.; Futaki, S.; Harashima, H. Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method. J. Control. Release 2004, 98, 317–323, doi:10.1016/j.jconrel.2004.04.024.
[22]  Khalil, I.A.; Kogure, K.; Futaki, S.; Harashima, H. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J. Biol. Chem. 2006, 281, 3544–3551.
[23]  Kogure, K.; Akita, H.; Yamada, Y.; Harashima, H. Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv. Drug Deliv. Rev. 2008, 60, 559–571, doi:10.1016/j.addr.2007.10.007.
[24]  Khalil, I.A.; Kogure, K.; Yamada, M.; Harashima, H. Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. J. Gene Med. 2009, 11, 1171–1171.
[25]  Khalil, I.A.; Kogure, K.; Futaki, S.; Hama, S.; Akita, H.; Ueno, M.; Kishida, H.; Kudoh, M.; Mishina, Y.; Kataoka, K.; et al. Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther. 2007, 14, 682–689, doi:10.1038/sj.gt.3302910.
[26]  Akita, H.; Kudo, A.; Minoura, A.; Yamaguti, M.; Khalil, I.A.; Moriguchi, R.; Masuda, T.; Danev, R.; Nagayama, K.; Kogure, K.; et al. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials 2009, 30, 2940–2949, doi:10.1016/j.biomaterials.2009.02.009.
[27]  El-Sayed, A.; Khalil, I.A.; Kogure, K.; Futaki, S.; Harashima, H. Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape. J. Biol. Chem. 2008, 283, 23450–23461, doi:10.1074/jbc.M709387200.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413