全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Catalysts  2013 

Sulfonate Ionic Liquid as a Stable and Active Catalyst for Levoglucosenone Production from Saccharides via Catalytic Pyrolysis

DOI: 10.3390/catal3040757

Keywords: ionic liquid, cellulose, pyrolysis, catalysis, levoglucosenone

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, various types of ionic liquids (ILs) were examined for catalytic activity in the pyrolysis of cellulose for the production of levoglucosenone, which is a valuable and versatile compound for the synthesis of a variety of novel compounds. Cellulose was simply mixed with the ILs and subjected for the pyrolysis, typically at 300 °C, to produce volatile products, including levoglucosenone, separated from the ILs phase. The type of IL anion significantly affected the catalysis, and the use of ILs bearing sulfonate anion resulted in distinguished yields of levoglucosenone and IL recoveries for the reutilization. Detailed thermogravimetric analysis and discussion on properties of ILs revealed the active and thermally stable nature of the sulfonate ILs. Catalytic pyrolysis with those ILs was applied to the conversion of other saccharides composed of glucose molecules, resulting in a preferential formation of levoglucosenone but at low yields as compared to that from cellulose.

References

[1]  Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A 2010, 373, 1–56, doi:10.1016/j.apcata.2009.10.008.
[2]  Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975.
[3]  Feng, L.; Chen, Z.-L. Research progress on dissolution and functional modification of cellulose in ionic liquids. J. Mol. Liq. 2008, 142, 1–5, doi:10.1016/j.molliq.2008.06.007.
[4]  Lansalot-Matras, C.; Moreau, C. Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catal. Commun. 2003, 4, 517–520, doi:10.1016/S1566-7367(03)00133-X.
[5]  Binder, J.B.; Raines, R.T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. J. Am. Chem. Soc. 2009, 131, 1979–1985, doi:10.1021/ja808537j.
[6]  Tao, F.; Song, H.; Chou, L. Catalytic conversion of cellulose to chemicals in ionic liquid. Carbohydr. Res. 2011, 346, 58–63, doi:10.1016/j.carres.2010.10.022.
[7]  Dadi, A.; Schall, C.; Varanasi, S. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 2007, 137–140, 407–421, doi:10.1007/s12010-007-9068-9.
[8]  Pu, Y.; Jiang, N.; Ragauskas, A.J. Ionic Liquid as a Green Solvent for Lignin. J. Wood Chem. Technol. 2007, 27, 23–33, doi:10.1080/02773810701282330.
[9]  Lee, S.H.; Doherty, T.V.; Linhardt, R.J.; Dordick, J.S. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 2009, 102, 1368–1376, doi:10.1002/bit.22179.
[10]  Cox, B.J.; Ekerdt, J.G. Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresour. Technol. 2012, 118, 584–588, doi:10.1016/j.biortech.2012.05.012.
[11]  Jiang, F.; Zhu, Q.; Ma, D.; Liu, X.; Han, X. Direct conversion and NMR observation of cellulose to glucose and 5-hydroxymethylfurfural (HMF) catalyzed by the acidic ionic liquids. J. Mol. Catal. A 2011, 334, 8–12, doi:10.1016/j.molcata.2010.10.006.
[12]  Bao, Q.; Qiao, K.; Tomida, D.; Yokoyama, C. Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid. Catal. Commun. 2008, 9, 1383–1388, doi:10.1016/j.catcom.2007.12.002.
[13]  Choi, J.S.; Simanjuntaka, F.S.H.; Oh, J.Y.; Lee, K.I.; Lee, S.D.; Cheong, M.; Kim, H.S.; Lee, H. Ionic-liquid-catalyzed decarboxylation of glycerol carbonate to glycidol. J. Catal. 2013, 297, 248–255, doi:10.1016/j.jcat.2012.10.015.
[14]  Awad, L.; Demange, R.; Zhu, Y.H.; Vogel, P. The use of levoglucosenone and isolevoglucosenone as templates for the construction of C-linked disaccharides. Carbohydr. Res. 2006, 341, 1235–1252, doi:10.1016/j.carres.2006.04.008.
[15]  Samet, A.V.; Lutov, D.N.; Firgang, S.I.; Lyssenko, K.A.; Semenov, V.V. A concise approach to chiral chromenes based on levoglucosenone. Tetrahedron Lett. 2011, 52, 3026–3028, doi:10.1016/j.tetlet.2011.04.004.
[16]  Kudo, S.; Zhou, Z.; Norinaga, K.; Hayashi, J.-i. Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid. Green Chem. 2011, 13, 3306–3311, doi:10.1039/c1gc15975e.
[17]  Fredlake, C.P.; Crosthwaite, J.M.; Hert, D.G.; Aki, S.N.V.K.; Brennecke, J.F. Thermophysical Properties of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data 2004, 49, 954–964, doi:10.1021/je034261a.
[18]  Hunt, P.A. Why Does a Reduction in Hydrogen Bonding Lead to an Increase in Viscosity for the 1-Butyl-2,3-dimethyl-imidazolium-Based Ionic Liquids? J. Phys. Chem. B 2007, 111, 4844–4853, doi:10.1021/jp067182p.
[19]  Hao, Y.; Peng, J.; Hu, S.; Li, J.; Zhai, M. Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA–MS analysis and DFT calculations. Thermochim. Acta 2010, 501, 78–83, doi:10.1016/j.tca.2010.01.013.
[20]  Freemantle, M. Chapter 1 Introduction. In An Introduction to Ionic Liquids; RSC Publishing: Cambridge, UK, 2010; pp. 3–4.
[21]  Dobele, G.; Rossinskaja, G.; Telysheva, G.; Meier, D.; Faix, O. Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. J. Anal. Appl. Pyrolysis 1999, 49, 307–317, doi:10.1016/S0165-2370(98)00126-0.
[22]  Dobele, G.; Dizhbite, T.; Rossinskaja, G.; Telysheva, G.; Meier, D.; Radtke, S.; Faix, O. Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis. J. Anal. Appl. Pyrolysis 2003, 68–69, 197–211.
[23]  Sui, X.W.; Wang, Z.; Liao, B.; Zhang, Y.; Guo, Q.X. Preparation of levoglucosenone through sulfuric acid promoted pyrolysis of bagasse at low temperature. Bioresour. Technol. 2012, 103, 466–469, doi:10.1016/j.biortech.2011.10.010.
[24]  Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev. 2011, 111, 3508–3576, doi:10.1021/cr1003248.
[25]  Bao, Q.; Qiao, K.; Tomida, D.; Yokoyama, C. 1-Methylimidazolium Chlorosulfate ([HMIm]SO3Cl): A Novel Ionic Liquid with Dual Br?nsted–Lewis Acidity. Chem. Lett. 2010, 39, 728–729, doi:10.1246/cl.2010.728.
[26]  Crowhurst, L.; Mawdsley, P.R.; Perez-Arlandis, J.M.; Salter, P.A.; Welton, T. Solvent–solute interactions in ionic liquids. Phys. Chem. Chem. Phys. 2003, 5, 2790–2794, doi:10.1039/b303095d.
[27]  Pulati, N.; Sobkowiak, M.; Mathews, J.P.; Painter, P. Low-Temperature Treatment of Illinois No. 6 Coal in Ionic Liquids. Energy Fuels 2012, 26, 3548–3552, doi:10.1021/ef3002923.
[28]  Sanders, E.B.; Goldsmith, A.I.; Seeman, J.I. A model that distinguishes the pyrolysis of d-glucose, D-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation. J. Anal. Appl. Pyrolysis 2003, 66, 29–50, doi:10.1016/S0165-2370(02)00104-3.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133