全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Catalysts  2013 

Mesoporous Silica Based Gold Catalysts: Novel Synthesis and Application in Catalytic Oxidation of CO and Volatile Organic Compounds (VOCs)

DOI: 10.3390/catal3040774

Keywords: gold, mesoporous silica, catalyst preparation, functionalization, CO oxidation, methanol, dimethyldisulfide oxidation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gold nanoparticles, particularly with the particle size of 2–5 nm, have attracted increasing research attention during the past decades due to their surprisingly high activity in CO and volatile organic compounds (VOCs) oxidation at low temperatures. In particular, CO oxidation below room temperature has been extensively studied on gold nanoparticles supported on several oxides (TiO 2, Fe 2O 3, CeO 2, etc.). Recently, mesoporous silica materials (such as SBA-15, MCM-41, MCM-48 and HMS) possessing ordered channel structures and suitable pore diameters, large internal surface areas, thermal stabilities and excellent mechanical properties, have been investigated as suitable hosts for gold nanoparticles. In this review we highlight the development of novel mesoporous silica based gold catalysts based on examples, mostly from recently reported results. Several synthesis methods are described herein. In detail we report: the modification of silica with organic functional groups; the one-pot synthesis with the incorporation of both gold and coupling agent containing functionality for the synthesis of mesoporous silica; the use of cationic gold complexes; the synthesis of silica in the presence of gold colloids or the dispersion of gold colloids protected by ligands or polymers onto silica; the modification of silica by other metal oxides; other conventional preparation methods to form mesoporous silica based gold catalysts. The gold based catalysts prepared as such demonstrate good potential for use in oxidation of CO and VOCs at low temperatures. From the wide family of VOCs, the oxidation of methanol and dimethyldisulfide has been addressed in the present review.

References

[1]  Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 2, 405–408.
[2]  Haruta, M.; Kageyama, H.; Kamijo, N.; Kobayashi, T.; Delannay, F. Fine Structure of novel gold catalysts prepared by coprecipitation. Stud. Surf. Sci. Catal. 1989, 44, 33–42, doi:10.1016/S0167-2991(09)61278-7.
[3]  Hutchings, G.J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 1985, 96, 292–295, doi:10.1016/0021-9517(85)90383-5.
[4]  Bond, G.C.; Thompson, D.T. Catalysis by gold. Catal. Rev. Sci. Eng. 1999, 41, 319–388, doi:10.1081/CR-100101171.
[5]  Haruta, M.; Daté, M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A 2001, 222, 427–437, doi:10.1016/S0926-860X(01)00847-X.
[6]  Choudhary, T.V.; Goodman, D.W. Oxidation catalysis by supported gold nano-clusters. Top. Catal. 2002, 21, 25–34, doi:10.1023/A:1020595713329.
[7]  Hashmi, A.S.K.; Hutchings, G.J. Gold catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896–7936, doi:10.1002/anie.200602454.
[8]  Kung, M.C.; Davis, R.J.; Kung, H.H. Understanding Au-catalyzed low-temperature CO oxidation. J. Phys. Chem. C 2007, 111, 11767–11775, doi:10.1021/jp072102i.
[9]  Della Pina, C.; Falletta, E.; Prati, L.; Rossi, M. Selective oxidation using gold. Chem. Soc. Rev. 2008, 37, 2077–2095, doi:10.1039/b707319b.
[10]  Corma, A.; Garcia, H. Supported gold nanoparticles for organic reactions. Chem. Soc. Rev. 2008, 37, 2096–2126, doi:10.1039/b707314n.
[11]  Li, D.; Nakagawa, Y.; Tomishige, K. Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl. Catal. A 2011, 408, 1–24, doi:10.1016/j.apcata.2011.09.018.
[12]  Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309, doi:10.1016/0021-9517(89)90034-1.
[13]  Yuan, Y.; Kozlova, A.P.; Asakura, K.; Wan, H.; Tsai, K.; Iwasawa, Y. Supported Au catalysts prepared from Au phosphine complexes and as-precipitated metal hydroxides: Characterization and low-temperature CO oxidation. J. Catal. 1997, 170, 191–199, doi:10.1006/jcat.1997.1752.
[14]  Lin, S.D.; Bollinger, M.; Vannice, M.A. Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts. Catal. Lett. 1993, 17, 245–262.
[15]  Dekkers, M.A.P.; Lippits, M.J.; Nieuwenhuys, B.E. Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions. Catal. Today 1999, 54, 381–390, doi:10.1016/S0920-5861(99)00201-1.
[16]  Oh, H.S.; Yang, J.H.; Costello, C.K.; Wang, Y.M.; Bare, S.R.; Kung, H.H.; Kung, M.C. Selective catalytic oxidation of CO: Effect of chloride on supported Au catalysts. J. Catal. 2002, 210, 375–386, doi:10.1006/jcat.2002.3710.
[17]  Song, S.W.; Hidajat, K.; Kawi, S. Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix-drug interactions. Langmuir 2005, 21, 9568–9575, doi:10.1021/la051167e.
[18]  Bai, Y.; Yang, H.; Yang, W.; Li, Y.; Sun, C. Gold nanoparticles mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sens. Actuators B 2007, 124, 179–186, doi:10.1016/j.snb.2006.12.020.
[19]  Yiu, H.H.P.; Wright, P.A.; Botting, N.P. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalized surfaces. J. Mol. Catal. B 2001, 15, 81–92, doi:10.1016/S1381-1177(01)00011-X.
[20]  Okumura, M.; Nakamura, S.; Tsubota, S.; Nakamura, T.; Azuma, M.; Haruta, M. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2. Catal. Lett. 1998, 51, 53–58.
[21]  Zhang, L.X.; Shi, J.L.; Yu, J.; Hua, Z.L.; Zhao, X.G.; Ruan, M.L. A new in-situ reduction route for the synthesis of Pt nanoclusters in the channels of mesoporous silica SBA-15. Adv. Mater. 2002, 14, 1510–1513, doi:10.1002/1521-4095(20021016)14:20<1510::AID-ADMA1510>3.0.CO;2-W.
[22]  Sun, J.; Ma, D.; Zhang, H.; Liu, X.; Han, X.; Bao, X.; Weinberg, G.; Pfander, N.; Su, D. Toward monodispersed silver nanoparticles with unusual thermal stability. J. Am. Chem. Soc. 2006, 128, 15756–15764.
[23]  Zhao, D.Y.; Feng, J.L.; Huo, Q.S.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552, doi:10.1126/science.279.5350.548.
[24]  Yan, W.F.; Chen, B.; Mahurin, S.M.; Hagaman, E.W.; Dai, S.; Overbury, S.H. Surface sol–gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles. J. Phys. Chem. B 2004, 108, 2793–2796, doi:10.1021/jp037713z.
[25]  Wu, H.J.; Wang, L.D.; Zhang, J.Q.; Shen, Z.Y.; Zhao, J.H. Catalytic oxidation of benzene, toluene and p-xylene over colloidal gold supported on zinc oxide catalyst. Catal. Commun. 2011, 12, 859–865, doi:10.1016/j.catcom.2011.02.012.
[26]  Comotti, M.; Li, W.C.; Spliethoff, B.; Schüth, F. Support effect in high activity gold catalyst for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917–924, doi:10.1021/ja0561441.
[27]  Liotta, L.F.; Pantaleo, G.; Puleo, F.; Venezia, A.M. Au/CeO2-SBA-15 catalysts for CO oxidation: Effect of ceria loading on physic-chemical properties and catalytic performances. Catal. Today 2012, 187, 10–19, doi:10.1016/j.cattod.2012.01.001.
[28]  Beck, A.; Horvath, A.; Stefler, G.; Katona, R.; Geszti, O.; Tolnai, G.; Liotta, L.F.; Guczi, L. Formation and structure of Au/TiO2 and Au/CeO2 nanostructures in mesoporous SBA-15. Catal. Today 2008, 139, 180–187, doi:10.1016/j.cattod.2008.05.039.
[29]  Bonelli, R.; Lucarelli, C.; Pasini, T.; Liotta, L.F.; Zacchini, S.; Albonetti, S. Total oxidation of volatile organic compounds on Au/FeOx catalysts supported on mesoporous SBA-15 silica. Appl. Catal. A 2011, 400, 54–60, doi:10.1016/j.apcata.2011.04.014.
[30]  Xu, X.X.; Hao, Z.P.; Zhao, W.; Hu, C. Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation. Mater. Res. Bull. 2006, 41, 406–413, doi:10.1016/j.materresbull.2005.08.003.
[31]  Escamilla-Perea, L.; Peza-Ledesma, C.L.; Nava, R.; Rivera-Munoz, E.M.; Pawelec, B.; Fierro, J.L.G. CO oxidation at 20 °C over Au/SBA-15 catalysts decorated by Fe2O3 nanoparticles. Catal. Commun. 2011, 15, 108–112.
[32]  Ren, L.H.; Zhang, H.L.; Lu, A.H.; Hao, Y.; Li, W.C. Porous silica as supports for controlled fabrication of Au/CeO2/SiO2 catalysts for CO oxidation: Influence of the silica nanostructures. Micropor. Mesopor. Mater. 2012, 158, 7–12, doi:10.1016/j.micromeso.2012.03.010.
[33]  Ma, G.; Binder, A.; Chi, M.; Liu, C.; Jin, R.; Jiang, D.; Fan, J.; Dai, S. Stabilizing gold clusters by heterostructured transition-metal oxide–mesoporous silica supports for enhanced catalytic activities for CO oxidation. Chem. Commun. 2012, 48, 11413–11415.
[34]  Yang, C.M.; Sheu, H.S.; Chao, K.J. Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48. Adv. Funct. Mater. 2002, 12, 143–148, doi:10.1002/1616-3028(20020201)12:2<143::AID-ADFM143>3.0.CO;2-A.
[35]  Yang, C.M.; Kalwei, M.; Schüth, F.; Chao, K.J. Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation. Appl. Catal. A 2003, 254, 289–296, doi:10.1016/S0926-860X(03)00490-3.
[36]  Chi, Y.S.; Lin, H.P.; Mou, C.Y. CO oxidation over gold nanocatalyst confined in mesoporous silica. Appl. Catal. A 2005, 284, 199–206.
[37]  Lee, B.; Ma, Z.; Zhang, Z.T.; Park, C.; Dai, S. Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts. Micropor. Mesopor. Mater. 2009, 122, 160–167, doi:10.1016/j.micromeso.2009.02.029.
[38]  Zhu, H.G.; Lee, B.; Dai, S.; Overbury, S.H. Coassembly synthesis of ordered mesoporous silica materials containing Au nanoparticles. Langmuir 2003, 19, 3974–3980, doi:10.1021/la027029w.
[39]  Song, H.Y.; Li, G.; Wang, X.S. In situ synthesis of Au/Ti-HMS and its catalytic performance in oxidation of bulky sulfur compounds using in situ generated H2O2 in the presence of H2/O2. Micropor. Mesopor. Mater. 2009, 120, 346–350, doi:10.1016/j.micromeso.2008.11.023.
[40]  Song, H.Y.; Li, G.; Wang, X.S.; Xu, Y.J. Characterization and catalytic performance of Au/Ti-HMS catalysts on the oxidative desulphurization using in situ H2O2: Effect of method catalysts preparation. Catal. Today 2010, 149, 127–131, doi:10.1016/j.cattod.2009.04.013.
[41]  Zhu, J.; Kónya, Z.; Puntes, V.F.; Kiricsi, I.; Miao, C.X.; Ager, J.W.; Alivisatos, A.P.; Somorjai, G.A. Encapsulation of metal (Au, Ag, Pt) nanoparticles into the mesoporous SBA-15 structure. Langmuir 2003, 19, 4396–4401, doi:10.1021/la0207421.
[42]  Song, H.Y.; Li, G.; Wang, X.S.; Chen, Y.Y. Characterization and catalytic performance of Au/Ti-HMS for direct generation of H2O2 and in situ-H2O2-ODS from H2 and O2: An in situ-reduction synthesis and a recycle study of catalyst. Micropor. Mesopor. Mater. 2011, 139, 104–109, doi:10.1016/j.micromeso.2010.10.026.
[43]  Zhu, H.G.; Liang, C.D.; Yan, W.F.; Overbury, S.H.; Dai, S. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. J. Phys. Chem. B 2006, 110, 10842–10848.
[44]  Zhu, H.G.; Ma, Z.; Clark, J.C.; Pan, Z.W.; Overbury, S.H.; Dai, S. Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor. Appl. Catal. A 2007, 326, 89–99, doi:10.1016/j.apcata.2007.04.004.
[45]  Yin, H.F.; Ma, Z.; Zhu, H.G.; Chi, M.F.; Dai, S. Evidence for and mitigation of the encapsulation of gold nanoparticles within silica supports upon high-temperature treatment of Au/SiO2 catalysts: Implication to catalyst deactivation. Appl. Catal. A 2010, 386, 147–156, doi:10.1016/j.apcata.2010.07.049.
[46]  Asefa, T.; Lennox, R.B. Synthesis of gold nanoparticles via electroless deposition in SBA-15. Chem. Mater. 2005, 17, 2481–2483, doi:10.1021/cm047800j.
[47]  Wang, Z.J.; Xie, Y.B.; Liu, C.J. Synthesis and characterization of noble metal (Pd, Pt, Au, Ag) nanostructured materials confined in the channels of mesoporous SBA-15. J. Phys. Chem. C 2008, 112, 19818–19824, doi:10.1021/jp805538j.
[48]  Shironita, S.; Takasaki, T.; Kamegawa, T.; Mori, K.; Yamashita, H. Application of microwave-assisted deposition for the synthesis of noble metal particles on Ti-containing mesoporous silica. Catal. Lett. 2009, 129, 404–407, doi:10.1007/s10562-009-9861-x.
[49]  Haruta, M. Size-and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166, doi:10.1016/S0920-5861(96)00208-8.
[50]  Scirè, S.; Liotta, L.F. Supported gold catalysts for the total oxidation of volatile organic compounds. Appl. Catal. B 2012, 125, 222–246, doi:10.1016/j.apcatb.2012.05.047.
[51]  Sobczak, I.; Kieronczyk, N.; Trejda, M.; Ziolek, M. Gold, vanadium and niobium containing MCM-41 materials-Catalytic properties in methanol oxidation. Catal. Today 2008, 139, 188–195, doi:10.1016/j.cattod.2008.05.029.
[52]  Solsona, B.; Perez-Cabero, M.; Vazquez, I.; Dejoz, A.; Garcia, T.; Alvarez-Rodriguez, J.; El-Haskouri, J.; Beltran, D.; Amoros, P. Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica. Chem. Eng. J. 2012, 187, 391–400, doi:10.1016/j.cej.2012.01.132.
[53]  Kucherov, A.V.; Sinev, I.M.; Ojala, S.; Keiski, R.; Kustov, L.M. Adsorptive-catalytic removal of CH3OH, CH3SH, and CH3SSCH3 from air over the bifunctional system noble metals/HZSM-5. Studies Surf. Sci. Catal. 2007, 170, 1129–1136, doi:10.1016/S0167-2991(07)80969-4.
[54]  Kucherov, A.V.; Tkachenko, O.P.; Kirichenko, O.A.; Kapustin, G.I.; Mishin, I.V.; Klementiev, K.V.; Ojala, S.; Kustov, L.M.; Keiski, R. Nanogold-containing catalysts for low-temperature removal of S-VOC from air. Top Catal. 2009, 52, 351–358, doi:10.1007/s11244-008-9168-y.
[55]  Wu, S.H.; Mou, C.Y.; Lin, H.P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862–3875, doi:10.1039/c3cs35405a.
[56]  Ma, Z.; Dai, S. Development of novel supported gold catalysts: A materials perspective. Nano Res. 2011, 4, 3–32.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413