A facile and efficient method for the synthesis of pentafluorophenyl- and related polyfluorophenyl-substituted porphyrins has been achieved via palladium-catalyzed cross-coupling reactions of brominated porphyrins with bis(polyfluorophenyl)zinc reagents. The reaction is applicable to a variety of free-base bromoporphyrins, their metal complexes, and a number of bis(polyfluorophenyl)zinc reagents.
References
[1]
Shinokubo, H.; Osuka, A. Marriage of Porphyrin Chemistry with Metal-Catalysed Reactions. Chem. Commun. 2009, 1011–1021, doi:10.1039/b817941g.
Senge, M.O. Stirring the Porphyrin Alphabet Soup–Functionalization Reactions for Porphyrins. Chem. Commun. 2011, 47, 1943–1960, doi:10.1039/c0cc03984e.
[4]
Yorimitsu, H.; Osuka, A. Organometallic Approaches for Direct Modification of Peripheral C–H Bonds in Porphyrin Cores. Asian J. Org. Chem. 2013, 2, 356–373, doi:10.1002/ajoc.201200183.
[5]
Takanami, T. Functionalization of Porphyrins through C-C Bond Formation Reactions with Functional Group-Bearing Organometallic Reagents. Heterocycles 2013, 87, 1659–1689, doi:10.3987/REV-13-775.
[6]
Sugita, N.; Hayashi, S.; Hino, F.; Takanami, T. Palladium-Catalyzed Kumada Coupling Reaction of Bromoporphyrins with Silylmethyl Grignard Reagents: Preparation of Silylmethyl-substituted Porphyrins as a Multipurpose Synthon for Fabrication of Porphyrin Systems. J. Org. Chem. 2012, 77, 10488–10497, doi:10.1021/jo302122f.
[7]
The Porphyrin Handbook; Kadish, K.M., Smith, K.M., Guilard, R., Eds.; Academic Press: San Diego, CA, USA, 1999–2003; Volume 1–20.
[8]
Handbook of Porphyrin Science; Kadish, K.M., Smith, K.M., Guilard, R., Eds.; World Scientific: Singapore, 2010; Volume 1–25.
[9]
Che, C.-M.; Lo, V.K.-Y.; Zhou, C.-Y.; Huang, J.-S. Selective Functionalisation of Saturated C–H Bonds with Metalloporphyrin Catalysts. Chem. Soc. Rev. 2011, 40, 1950–1975, doi:10.1039/c0cs00142b.
Takanami, T.; Suda, K. Metalloporphyrins and Phthalocyanines as Efficient Lewis Acid Catalysts with a Unique Reaction-Field. J. Synth. Org. Chem. Jpn. 2009, 67, 595–605, doi:10.5059/yukigoseikyokaishi.67.595.
[12]
Tachinami, T.; Nishimura, T.; Ushimaru, R.; Noyori, R.; Naka, H. Hydration of Terminal Alkynes Catalyzed by Water-Soluble Cobalt Porphyrin Complexes. J. Am. Chem. Soc. 2013, 135, 50–53, doi:10.1021/ja310282t.
[13]
Fujiwara, K.; Kurahashi, T.; Matsubara, S. Cationic Iron(III) Porphyrin-Catalyzed [4 + 2] Cycloaddition of Unactivated Aldehydes with Simple Dienes. J. Am. Chem. Soc. 2012, 134, 5512–5515, doi:10.1021/ja300790x.
[14]
Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R.J.; Goddard, W.A., III; Groves, J.T. Oxidative Aliphatic C-H Fluorination with Fluoride Ion Catalyzed by a Manganese Porphyrin. Science 2012, 337, 1322–1325, doi:10.1126/science.1222327.
[15]
Therrien, B. Transporting and Shielding Photosensitisers by Using Water-Soluble Organometallic Cages: A New Strategy in Drug Delivery and Photodynamic Therapy. Chem. Eur. J. 2013, 19, 8378–8386, doi:10.1002/chem.201301348.
Ethirajan, M.; Chen, P.; Ohulchanskyy, T.Y.; Goswami, L.N.; Gupta, A.; Srivatsan, A.; Dobhal, M.P.; Missert, J.R.; Prasad, P.N.; Kadish, K.M.; et al. Regioselective Synthesis and Photophysical and Electrochemical Studies of 20-Substituted Cyanine Dye–Purpurinimide Conjugates: Incorporation of NiII into the Conjugate Enhances its Tumor-Uptake and Fluorescence-Imaging Ability. Chem. Eur. J. 2013, 19, 6670–6684, doi:10.1002/chem.201203867.
[18]
Kumar, D.; Mishra, B.A.; Chandra Shekar, K.P.; Kumar, A.; Kusaka, E.; Ito, T. Remarkable Photocytotoxicity of a Novel Triazole-Linked Cationic Porphyrin-β-Carboline Conjugate. Chem. Commun. 2013, 49, 683–685.
[19]
Son, H.-J.; Jin, S.; Patwardhan, S.; Wezenberg, S.J.; Jeong, N.C.; So, M.; Wilmer, C.E.; Sarjeant, A.A.; Schatz, G.C.; Snurr, R.Q.; et al. Light-Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal–Organic Frameworks. J. Am. Chem. Soc. 2013, 135, 862–869, doi:10.1021/ja310596a.
[20]
Bandi, V.; Ohkubo, K.; Fukuzumi, S.; D’Souza, F. A Broad-Band Capturing and Emitting Molecular Triad: Synthesis and Photochemistry. Chem. Commun. 2013, 49, 2867–2869, doi:10.1039/c3cc40471d.
[21]
Adams, H.; Chekmeneva, E.; Hunter, C.A.; Misuraca, M.C.; Navarro, C.; Turega, S.M. Quantification of the Effect of Conformational Restriction on Supramolecular Effective Molarities. J. Am. Chem. Soc. 2013, 135, 1853–1863.
[22]
Matsumura, M.; Tanatani, A.; Azumaya, I.; Masu, H.; Hashizume, D.; Kagechika, H.; Muranaka, A.; Uchiyama, M. Unusual Conformational Preference of an Aromatic Secondary Urea: Solvent-Dependent Open-Closed Conformational Switching of N,N’-Bis(porphyrinyl)urea. Chem. Commun. 2013, 49, 2290–2292, doi:10.1039/c2cc37583d.
[23]
Berova, N.; Pescitelli, G.; Petrovica, A.G.; Pronic, G. Probing Molecular Chirality by CD-Sensitive Dimeric Metalloporphyrin Hosts. Chem. Commun. 2009, 5958–5980.
Borhan et al. reported that incorporation of pentafluorophenyl groups onto the meso carbons of porphyrin zinc complexes can significantly lower the LUMO energy and thus increase the Lewis acidity compared to their non-fluorinated analogues, see: ref [27]
[26]
Rao, P.D.; Dhanalekshmi, S.; Littler, B.J.; Lindsey, J.S. Rational Syntheses of Porphyrins Bearing up to Four Different Meso Substituents. J. Org. Chem. 2000, 65, 7323–7344, doi:10.1021/jo000882k.
[27]
Li, X.; Tanasova, M.; Vasileiou, C.; Borhan, B. A Powerful Reporter of Absolute Configuration for erythro and threo Diols, Amino Alcohols, and Diamines. J. Am. Chem. Soc. 2008, 130, 1885–1893, doi:10.1021/ja0752639.
[28]
Fang, Z.; Breslow, R. Metal Coordination-Directed Hydroxylation of Steroids with a Novel Artificial P-450 Catalyst. Org. Lett. 2006, 8, 251–254, doi:10.1021/ol052589i.
[29]
Dogutan, D.K.; Bediako, D.K.; Teets, T.S.; Schwalbe, M.; Nocera, D.G. Efficient Synthesis of Hangman Porphyrins. Org. Lett. 2010, 12, 1036–1039.
[30]
Jurow, M.; Farley, C.; Pabon, C.; Hageman, B.; Dolor, A.; Drain, C.M. Facile Synthesis of a Flexible Tethered Porphyrin Dimer That Preferentially Complexes Fullerene C70. Chem. Commun. 2012, 48, 4731–4733.
[31]
Ashburn, B.O.; Carter, R.G. Diels–Alder Approach to Polysubstituted Biaryls: Rapid Entry to Tri- and Tetra-ortho-substituted Phosphorus-Containing Biaryls. Angew. Chem. Int. Ed. 2006, 45, 6737–6741, doi:10.1002/anie.200602683.
[32]
Korenaga, T.; Kosaki, T.; Fukumura, R.; Ema, T.; Sakai, T. Suzuki-Miyaura Coupling Reaction Using Pentafluorophenylboronic Acid. Org. Lett. 2005, 7, 4915–4917, doi:10.1021/ol051866i.
[33]
Molander, G.A.; Biolatto, B. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions of Potassium Aryl- and Heteroaryltrifluoroborates. J. Org. Chem. 2003, 68, 4302–4314, doi:10.1021/jo0342368.
[34]
Frohn, H.-J.; Adonin, N.Y.; Bardinb, V.V.; Starichenko, V.F. Highly Efficient Cross-Coupling Reactions with the Perfluoroorganotrifluoroborate Salts K [RFBF3] (RF = C6F5, CF2=CF). Tetrahedron Lett. 2002, 43, 8111–8114.
[35]
DiMagno, S.G.; Lin, V.S.-Y.; Therien, M.J. Facile Elaboration of Porphyrins via Metal-Mediated Cross-Coupling. J. Org. Chem. 1993, 58, 5983–5993, doi:10.1021/jo00074a027.
[36]
Takanami, T.; Yotsukura, M.; Inoue, W.; Inoue, N.; Hino, F.; Suda, K. A Facile and Efficient Synthesis of Mono- and Bis-Functionalized meso-Substituted Porphyrins via Palladium-Catalyzed Negishi Cross-Coupling. Heterocycles 2008, 76, 439–453, doi:10.3987/COM-08-S(N)25.
[37]
C?té, A.; Charette, A.B. General Method for the Expedient Synthesis of Salt-Free Diorganozinc Reagents Using Zinc Methoxide. J. Am. Chem. Soc. 2008, 130, 2771–2773, doi:10.1021/ja710864p.