This review presents the synergistic effect in the catalytic system of ionic liquids (ILs) for the synthesis of cyclic carbonate from carbon dioxide and epoxide. The emphasis of this review is on three aspects: the catalytic system of metal-based ionic liquids, the catalytic system of hydrogen bond-promoted ionic liquids and supported ionic liquids. Metal and ionic liquids show a synergistic effect on the cycloaddition reactions of epoxides. The cations and anions of ionic liquids show a synergistic effect on the cycloaddition reactions. The functional groups in cations or supports combined with the anions have a synergistic effect on the cycloaddition reactions. Synergistic catalytic effects of ILs play an important role of promoting the cycloaddition reactions of epoxides. The design of catalytic system of ionic liquids will be possible if the synergistic effect on a molecular level is understood.
References
[1]
Renemable Energy Industry. Available online: http://www.renewable-energy-industry.com/press-releases/press-releases_detail.php?changeLang=cn_CN&newsid=4338 (accessed on 14 October 2013).
[2]
Brennecke, J.F.; Maginn, E.J. Ionic liquids: Innovative fluids for chemical processing. AlChE J. 2001, 47, 2384–2389, doi:10.1002/aic.690471102.
[3]
Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 2007, 107, 2365–2387, doi:10.1021/cr068357u.
[4]
Anastas, P.T. Meeting the challenges to sustainability through green chemistry. Green Chem. 2003, 5, G29–G34, doi:10.1039/b211620k.
[5]
Williamson, T.; Kirchhoff, M.; Anastas, P. Advances in green chemistry recognized in the United States. Green Chem. 2000, 2, G85–G96, doi:10.1039/b007044k.
[6]
Anastas, P.T.; Lankey, R.L. Life cycle assessment and green chemistry: The yin and yang of industrial ecology. Green Chem. 2000, 2, 289–295, doi:10.1039/b005650m.
[7]
Clark, J.H. Green chemistry: Challenges and opportunities. Green Chem. 1999, 1, 1–8, doi:10.1039/a807961g.
Parrish, J.P.; Salvatore, R.N.; Jung, K.W. Perspectives on alkyl carbonates in organic synthesis. Tetrahedron 2000, 56, 8207–8237, doi:10.1016/S0040-4020(00)00671-2.
[12]
Leitner, W. The coordination chemistry of carbon dioxide and its relevance for catalysis: A critical survey. Coord. Chem. Rev. 1996, 153, 257–284, doi:10.1016/0010-8545(95)01226-5.
[13]
North, M.; Pasquale, R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chem. 2010, 12, 1514–1539, doi:10.1039/c0gc00065e.
[14]
Sakakura, T.; Kohno, K. The synthesis of organic carbonates from carbon dioxide. Chem. Commun. 2009, 1312–1330, doi:10.1039/b819997c.
[15]
Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 1999, 121, 4526–4527, doi:10.1021/ja9902165.
[16]
Yasuda, H.; He, L.-N.; Takahashi, T.; Sakakura, T. Non-halogen catalysts for propylene carbonate synthesis from CO2 under supercritical conditions. Appl. Catal. A 2006, 298, 177–180, doi:10.1016/j.apcata.2005.09.034.
[17]
Tu, M.; Davis, R.J. Cycloaddition of CO2 to epoxides over solid base catalysts. J. Catal. 2001, 199, 85–91, doi:10.1006/jcat.2000.3145.
[18]
Doskocil, E.J. Ion-exchanged ETS-10 catalysts for the cycloaddition of carbon dioxide to propylene oxide. Microporous Mesoporous Mater. 2004, 76, 177–183, doi:10.1016/j.micromeso.2004.08.009.
[19]
Xie, Y.; Zhang, Z.; Jiang, T.; He, J.; Han, B.; Wu, T.; Ding, K. CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross - linked polymer matrix. Angew. Chem. 2007, 119, 7393–7396, doi:10.1002/ange.200701467.
[20]
He, J.; Wu, T.; Zhang, Z.; Ding, K.; Han, B.; Xie, Y.; Jiang, T.; Liu, Z. Cycloaddition of CO2 to epoxides catalyzed by polyaniline salts. Chem. Eur. J. 2007, 13, 6992–6997, doi:10.1002/chem.200700210.
[21]
Du, Y.; Cai, F.; Kong, D.-L.; He, L.-N. Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chem. 2005, 7, 518–523, doi:10.1039/b500074b.
[22]
Kawanami, H.; Ikushima, Y. Chemical fixation of carbon dioxide to styrene carbonateunder supercritical conditions with DMF in the absence of any additional catalysts. Chem. Commun. 2000, 2089–2090, doi:10.1039/b006682f.
[23]
Barbarini, A.; Maggi, R.; Mazzacani, A.; Mori, G.; Sartori, G.; Sartorio, R. Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett. 2003, 44, 2931–2934, doi:10.1016/S0040-4039(03)00424-6.
[24]
Shen, Y.M.; Duan, W.L.; Shi, M. Phenol and organic bases Co-catalyzed chemical fixation of carbon dioxide with terminal epoxides to form cyclic carbonates. Adv. Synth. Catal. 2003, 345, 337–340, doi:10.1002/adsc.200390035.
[25]
Ratzenhofer, M.; Kisch, H. Metal—Catalyzed Synthesis of Cyclic Carbonates from Carbon Dioxide and Oxiranes. Angew. Chem. Int. Ed. Engl. 1980, 19, 317–318, doi:10.1002/anie.198003171.
[26]
Nishikubo, T.; Kameyama, A.; Yamashita, J.; Tomoi, M.; Fukuda, W. Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide. J. Polym. Sci. A 1993, 31, 939–947, doi:10.1002/pola.1993.080310412.
[27]
Kisch, H.; Millini, R.; Wang, I.J. Bifunktionelle Katalysatoren zur Synthese cyclischer Carbonate aus Oxiranen und Kohlendioxid. Chem. Ber. 1986, 119, 1090–1094, doi:10.1002/cber.19861190329.
[28]
Aida, T.; Inoue, S. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato) aluminum alkoxide having a long oxyalkylene chain as the alkoxide group. J. Am. Chem. Soc. 1983, 105, 1304–1309, doi:10.1021/ja00343a038.
[29]
Ji, D.; Lu, X.; He, R. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst. Appl. Catal. A 2000, 203, 329–333, doi:10.1016/S0926-860X(00)00500-7.
[30]
Paddock, R.L.; Nguyen, S.T. Chemical CO2 fixation: Cr (III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J. Am. Chem. Soc. 2001, 123, 11498–11499, doi:10.1021/ja0164677.
[31]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2084, doi:10.1021/cr980032t.
Peng, J.; Deng, Y. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J. Chem. 2001, 25, 639–641, doi:10.1039/b008923k.
[34]
Keskin, S.; Kayrak-Talay, D.; Akman, U.; Horta?su, ?. A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluid. 2007, 43, 150–180, doi:10.1016/j.supflu.2007.05.013.
[35]
Muldoon, M.J. Modern multiphase catalysis: New developments in the separation of homogeneous catalysts. Dalton Trans. 2010, 39, 337–348, doi:10.1039/b916861n.
[36]
Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: recent progress from knowledge to applications. Appl. Catal. A 2010, 373, 1–56, doi:10.1016/j.apcata.2009.10.008.
[37]
Riisager, A.; Fehrmann, R.; Haumann, M.; Wasserscheid, P. Supported Ionic Liquid Phase (SILP) Catalysis: An Innovative Concept for Homogeneous Catalysis in Continuous Fixed - Bed Reactors. Eur. J. Inorg. Chem. 2006, 2006, 695–706.
[38]
Riisagera, A.; Fehrmanna, R.; Haumannb, M.; Wasserscheidb, P. Supported ionic liquids: versatile reaction and separation media. Top. Catal. 2006, 40, 91–102.
[39]
Wasserscheid, P. Continuous reactions using ionic liquids as catalytic phase. J. Ind. Eng. Chem. 2007, 13, 325.
[40]
Wasserscheid, P.; Keim, W. Ionic liquids-new “solutions” for transition metal catalysis. Angew. Chem. 2000, 39, 3772–3789, doi:10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5.
[41]
Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley Online Library: Weinheim, Germany, 2008; Volume 1.
[42]
Ion, A.; Parvulescu, V.; Jacobs, P.; De Vos, D. Sc and Zn-catalyzed synthesis of cyclic carbonates from CO2 and epoxides. Appl. Catal. A 2009, 363, 40–44, doi:10.1016/j.apcata.2009.04.036.
[43]
Kim, H.S.; Kim, J.J.; Lee, B.G.; Jung, O.S.; Jang, H.G.; Kang, S.O. Isolation of a pyridinium alkoxy ion bridged dimeric zinc complex for the coupling reactions of CO2 and epoxides. Angew. Chem. 2000, 39, 4096–4098, doi:10.1002/1521-3773(20001117)39:22<4096::AID-ANIE4096>3.0.CO;2-9.
[44]
Kim, H.S.; Kim, J.J.; Lee, S.D.; Lah, M.S.; Moon, D.; Jang, H.G. New mechanistic insight into the coupling reactions of CO2 and epoxides in the presence of zinc complexes. Chem. Eur. J. 2003, 9, 678–686, doi:10.1002/chem.200390076.
[45]
Ramin, M.; Grunwaldt, J.-D.; Baiker, A. Behavior of homogeneous and immobilized zinc-based catalysts in cycloaddition of CO2 to propylene oxide. J. Catal. 2005, 234, 256–267, doi:10.1016/j.jcat.2005.06.020.
[46]
Ramin, M.; van Vegten, N.; Grunwaldt, J.-D.; Baiker, A. Simple preparation routes towards novel Zn-based catalysts for the solventless synthesis of propylene carbonate using dense carbon dioxide. J. Mol. Catal. A 2006, 258, 165–171, doi:10.1016/j.molcata.2006.05.041.
[47]
Shen, Y.-M.; Duan, W.-L.; Shi, M. Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes. J. Org. Chem. 2003, 68, 1559–1562, doi:10.1021/jo020191j.
[48]
Kim, H.S.; Kim, J.J.; Kim, H.; Jang, H.G. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. J. Catal. 2003, 220, 44–46, doi:10.1016/S0021-9517(03)00238-0.
[49]
Qiao, K.; Ono, F.; Bao, Q.; Tomida, D.; Yokoyama, C. Efficient synthesis of styrene carbonate from CO2 and styrene oxide using zinc catalysts immobilized on soluble imidazolium–styrene copolymers. J. Mol. Catal. A 2009, 303, 30–34, doi:10.1016/j.molcata.2008.12.025.
[50]
Han, L.; Park, S.-W.; Park, D.-W. Silica grafted imidazolium-based ionic liquids: efficient heterogeneous catalysts for chemical fixation of CO2 to a cyclic carbonate. Energy Environ. Sci. 2009, 2, 1286–1292, doi:10.1039/b910763k.
[51]
Sakai, T.; Tsutsumi, Y.; Ema, T. Highly active and robust organic–inorganic hybrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Green Chem. 2008, 10, 337–341, doi:10.1039/b718321f.
[52]
Shim, H.-L.; Udayakumar, S.; Yu, J.-I.; Kim, I.; Park, D.-W. Synthesis of cyclic carbonate from allyl glycidyl ether and carbon dioxide using ionic liquid-functionalized amorphous silica. Catal. Today 2009, 148, 350–354, doi:10.1016/j.cattod.2009.06.011.
[53]
Kossev, K.; Koseva, N.; Troev, K. Calcium chloride as co-catalyst of onium halides in the cycloaddition of carbon dioxide to oxiranes. J. Mol. Catal. A 2003, 194, 29–37, doi:10.1016/S1381-1169(02)00513-7.
[54]
Sibaouih, A.; Ryan, P.; Leskel?, M.; Rieger, B.; Repo, T. Facile synthesis of cyclic carbonates from CO2 and epoxides with cobalt (II)/onium salt based catalysts. Appl. Catal. A 2009, 365, 194–198, doi:10.1016/j.apcata.2009.06.011.
[55]
Palgunadi, J.; Kwon, O.; Lee, H.; Bae, J.Y.; Ahn, B.S.; Min, N.-Y.; Kim, H.S. Ionic liquid-derived zinc tetrahalide complexes: structure and application to the coupling reactions of alkylene oxides and CO2. Catal. Today 2004, 98, 511–514, doi:10.1016/j.cattod.2004.09.005.
[56]
Fujita, S.; Nishiura, M.; Arai, M. Synthesis of styrene carbonate from carbon dioxide and styrene oxide with various zinc halide-based ionic liquids. Catal. Lett. 2010, 135, 263–268, doi:10.1007/s10562-010-0286-3.
[57]
Sun, J.; Fujita, S.; Zhao, F.; Arai, M. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions. Green Chem. 2004, 6, 613–616, doi:10.1039/b413229g.
[58]
Ramin, M.; Grunwaldt, J.-D.; Baiker, A. IR spectroscopy and phase behavior studies of the catalytic synthesis of propylene carbonate: Expanded liquid versus supercritical fluid. Appl. Catal. A 2006, 305, 46–53, doi:10.1016/j.apcata.2006.02.045.
[59]
Sun, J.; Fujita, S.-I.; Zhao, F.; Arai, M. A highly efficient catalyst system of ZnBr2/n-Bu4NI for the synthesis of styrene carbonate from styrene oxide and supercritical carbon dioxide. Appl. Catal. A 2005, 287, 221–226, doi:10.1016/j.apcata.2005.03.035.
[60]
Li, F.; Xiao, L.; Xia, C.; Hu, B. Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm] Br catalyst system. Tetrahedron Lett. 2004, 45, 8307–8310.
[61]
Karodia, N.; Guise, S.; Newlands, C.; Andersen, J.-A. Clean catalysis with ionic solvents—phosphonium tosylates for hydroformylation. Chem. Commun. 1998, 2341–2342.
[62]
Kaufmann, D.E.; Nouroozian, M.; Henze, H. Molten salts as an efficient medium for palladium catalyzed CC coupling reactions. Synlett 1996, 1996, 1091–1092, doi:10.1055/s-1996-5658.
[63]
McNulty, J.; Capretta, A.; Wilson, J.; Dyck, J.; Adjabeng, G.; Robertson, A. Suzuki cross-coupling reactions of aryl halides in phosphonium salt ionic liquid under mild conditions. Chem. Commun. 2002, 1986–1987.
[64]
Quin, L.D.; Duke, J.B. A Guide to Organophosphorus Chemistry; Wiley: New York, NY, USA, 2000; Volume 2.
[65]
Del Sesto, R.E.; Corley, C.; Robertson, A.; Wilkes, J.S. Tetraalkylphosphonium-based ionic liquids. J. Organomet. Chem. 2005, 690, 2536–2542, doi:10.1016/j.jorganchem.2004.09.060.
[66]
Henderson, W.A., Jr.; Buckler, S.A. The nucleophilicity of phosphines. J. Am. Chem. Soc. 1960, 82, 5794–5800, doi:10.1021/ja01507a009.
[67]
Avent, A.G.; Chaloner, P.A.; Day, M.P.; Seddon, K.R.; Welton, T. Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate (III) ionic liquids. Dalton Trans. 1994, 3405–3413.
[68]
Sun, J.; Wang, L.; Zhang, S.; Li, Z.; Zhang, X.; Dai, W.; Mori, R. ZnCl2/phosphonium halide: An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate. J. Mol. Catal. A 2006, 256, 295–300, doi:10.1016/j.molcata.2006.05.004.
[69]
Cheng, W.; Fu, Z.; Wang, J.; Sun, J.; Zhang, S. ZnBr2-based choline chloride ionic liquid for efficient fixation of CO2 to cyclic carbonate. Synth. Commun. 2012, 42, 2564–2573, doi:10.1080/00397911.2011.562337.
[70]
Zhou, Y.; Hu, S.; Ma, X.; Liang, S.; Jiang, T.; Han, B. Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts. J. Mol. Catal. A 2008, 284, 52–57, doi:10.1016/j.molcata.2008.01.010.
[71]
Sun, J.; Han, L.; Cheng, W.; Wang, J.; Zhang, X.; Zhang, S. Efficient acid–base bifunctional catalysts for the fixation of CO2 with epoxides under metal—and solvent—free conditions. ChemSusChem 2011, 4, 502–507, doi:10.1002/cssc.201000305.
[72]
Dzyuba, S.V.; Bartsch, R.A. Expanding the polarity range of ionic liquids. Tetrahedron Lett. 2002, 43, 4657–4659, doi:10.1016/S0040-4039(02)00858-4.
[73]
Branco, L.C.; Rosa, J.N.; Moura Ramos, J.J.; Afonso, C.A. Preparation and characterization of new room temperature ionic liquids. Chem. Eur. J. 2002, 8, 3671–3677, doi:10.1002/1521-3765(20020816)8:16<3671::AID-CHEM3671>3.0.CO;2-9.
[74]
Fraga-Dubreuil, J.; Famelart, M.-H.; Bazureau, J.P. Ecofriendly fast synthesis of hydrophilic poly (ethyleneglycol)-ionic liquid matrices for liquid-phase organic synthesis. Org. Process Res. Dev. 2002, 6, 374–378, doi:10.1021/op020027y.
Pernak, J.; Sobaszkiewicz, K.; Foksowicz-Flaczyk, J. Ionic Liquids with Symmetrical Dialkoxymethyl - Substituted Imidazolium Cations. Chem. Eur. J. 2004, 10, 3479–3485, doi:10.1002/chem.200400075.
[77]
Sun, J.; Zhang, S.; Cheng, W.; Ren, J. Hydroxyl-functionalized ionic liquid: A novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Lett. 2008, 49, 3588–3591, doi:10.1016/j.tetlet.2008.04.022.
[78]
Sun, J. Study on the synthesis of cyclic carbonates catalyzed by ionic liquids. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, May 2009.
[79]
Sun, J.; Ren, J.; Zhang, S.; Cheng, W. Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Lett. 2009, 50, 423–426, doi:10.1016/j.tetlet.2008.11.034.
[80]
Huang, J.-W.; Shi, M. Chemical fixation of carbon dioxide by NaI/PPh3/PhOH. J. Org. Chem. 2003, 68, 6705–6709, doi:10.1021/jo0348221.
[81]
Wang, J.-Q.; Sun, J.; Cheng, W.-G.; Dong, K.; Zhang, X.-P.; Zhang, S.-J. Experimental and theoretical studies on hydrogen bond-promoted fixation of carbon dioxide and epoxides in cyclic carbonates. Phys. Chem. Chem. Phys. 2012, 14, 11021–11026, doi:10.1039/c2cp41698k.
[82]
Takahashi, T.; Watahiki, T.; Kitazume, S.; Yasuda, H.; Sakakura, T. Synergistic hybrid catalyst for cyclic carbonate synthesis: Remarkable acceleration caused by immobilization of homogeneous catalyst on silica. Chem. Commun. 2006, 1664–1666.
[83]
Udayakumar, S.; Raman, V.; Shim, H.-L.; Park, D.-W. Cycloaddition of carbon dioxide for commercially-imperative cyclic carbonates using ionic liquid-functionalized porous amorphous silica. Appl. Catal. A 2009, 368, 97–104, doi:10.1016/j.apcata.2009.08.015.
[84]
Xiao, L.-F.; Li, F.-W.; Peng, J.-J.; Xia, C.-G. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Mol. Catal. A 2006, 253, 265–269, doi:10.1016/j.molcata.2006.03.047.
[85]
Zhang, X.; Wang, D.; Zhao, N.; Al-Arifi, A.S.; Aouak, T.; Al-Othman, Z.A.; Wei, W.; Sun, Y. Grafted ionic liquid: Catalyst for solventless cycloaddition of carbon dioxide and propylene oxide. Catal. Commun. 2009, 11, 43–46.
[86]
Sun, J.; Cheng, W.; Fan, W.; Wang, Y.; Meng, Z.; Zhang, S. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal. Today 2009, 148, 361–367, doi:10.1016/j.cattod.2009.07.070.
[87]
Udayakumar, S.; Lee, M.-K.; Shim, H.-L.; Park, D.-W. Functionalization of organic ions on hybrid MCM-41 for cycloaddition reaction: The effective conversion of carbon dioxide. Appl. Catal. A 2009, 365, 88–95, doi:10.1016/j.apcata.2009.05.057.
[88]
Udayakumar, S.; Park, S.-W.; Park, D.-W.; Choi, B.-S. Immobilization of ionic liquid on hybrid MCM-41 system for the chemical fixation of carbon dioxide on cyclic carbonate. Catal. Commun. 2008, 9, 1563–1570, doi:10.1016/j.catcom.2008.01.001.
[89]
Zhao, Y.; Tian, J.-S.; Qi, X.-H.; Han, Z.-N.; Zhuang, Y.-Y.; He, L.-N. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal. A 2007, 271, 284–289, doi:10.1016/j.molcata.2007.03.047.
[90]
Wang, J.-Q.; Kong, D.-L.; Chen, J.-Y.; Cai, F.; He, L.-N. Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. J. Mol. Catal. A 2006, 249, 143–148, doi:10.1016/j.molcata.2006.01.008.
[91]
Wang, J.-Q.; Yue, X.-D.; Cai, F.; He, L.-N. Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions. Catal. Commun. 2007, 8, 167–172.
Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036, doi:10.1021/ja974025i.
[94]
Cheng, W.; Chen, X.; Sun, J.; Wang, J.; Zhang, S. SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides. Catal. Today 2013, 200, 117–124, doi:10.1016/j.cattod.2012.10.001.
[95]
Chen, X.; Sun, J.; Wang, J.; Cheng, W. Polystyrene-bound diethanolamine based ionic liquids for chemical fixation of CO2. Tetrahedron Lett. 2012, 53, 2684–2688, doi:10.1016/j.tetlet.2012.03.058.
[96]
Xie, H.; Zhang, S.; Li, S. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem. 2006, 8, 630–633, doi:10.1039/b517297g.
[97]
Yamaguchi, M. Hemibonding of hydroxyl radical and halide anion in aqueous solution. J. Phys. Chem. A 2011, 115, 14620–14628, doi:10.1021/jp2063386.
[98]
Liang, S.; Liu, H.; Jiang, T.; Song, J.; Yang, G.; Han, B. Highly efficient synthesis of cyclic carbonates from CO2 and epoxides over cellulose/KI. Chem. Commun. 2011, 47, 2131–2133, doi:10.1039/c0cc04829a.
[99]
Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] huisgen cycloaddition. Angew. Chem. 2009, 121, 6030–6034.
[100]
Alesi, S.; Di Maria, F.; Melucci, M.; Macquarrie, D.J.; Luque, R.; Barbarella, G. Microwave-assisted synthesis of oligothiophene semiconductors in aqueous media using silica and chitosan supported Pd catalysts. Green Chem. 2008, 10, 517–523, doi:10.1039/b718776a.
[101]
Baudoux, J.; Perrigaud, K.; Madec, P.-J.; Gaumont, A.-C.; Dez, I. Development of new SILP catalysts using chitosan as support. Green Chem. 2007, 9, 1346–1351, doi:10.1039/b709226a.
[102]
Primo, A.; Quignard, F. Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon–carbon bond formation. Chem. Commun. 2010, 46, 5593–5595, doi:10.1039/c0cc01137a.
[103]
Ricci, A.; Bernardi, L.; Gioia, C.; Vierucci, S.; Robitzer, M.; Quignard, F. Chitosan aerogel: a recyclable, heterogeneous organocatalyst for the asymmetric direct aldol reaction in water. Chem. Commun. 2010, 46, 6288–6290.
[104]
Guibal, E. Heterogeneous catalysis on chitosan-based materials: A review. Prog. Polym. Sci. 2005, 30, 71–109, doi:10.1016/j.progpolymsci.2004.12.001.
[105]
Sun, J.; Wang, J.; Cheng, W.; Zhang, J.; Li, X.; Zhang, S.; She, Y. Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem. 2012, 14, 654–660, doi:10.1039/c2gc16335g.