全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Catalysts  2013 

Investigation on the Stability of Supported Gold Nanoparticles

DOI: 10.3390/catal3030656

Keywords: gold nanoparticles, stability, sulfated zirconia, FTIR spectroscopy, LT-WGS reaction, oxidative esterification, furfural

Full-Text   Cite this paper   Add to My Lib

Abstract:

The procedures leading to the preservation of catalytic performances of Au/ZrO 2 samples have been investigated. The three potential causes of deactivation, namely the particle growth by sintering of gold nanoparticles, the metal leaching and the formation of un-reactive species which inhibit the reaction, have been evaluated. In particular, this paper deals with the stability of gold nanoparticles: (1) under storage conditions; (2) with time on stream for a gas phase reaction (LT-WGSR); (3) with time on stream for a liquid phase reaction (furfural oxidative esterification).

References

[1]  Haruta, M.; Kobayashi, T.; Yamada, H.S.N. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 2, 405–408.
[2]  Bond, G.C.; Louis, C.; Thompson, D.T. Catalysis by Gold; Imperial College Press: London, UK, 2006.
[3]  Menegazzo, F.; Manzoli, M.; Chiorino, A.; Boccuzzi, F.; Tabakova, T.; Signoretto, M.; Pinna, F.; Pernicone, N. Quantitative determination of gold active sites by chemisorption and by infrared measurements of adsorbed CO. J. Catal. 2006, 237, 431–434, doi:10.1016/j.jcat.2005.11.026.
[4]  Zane, F.; Trevisan, V.; Pinna, F.; Signoretto, M.; Menegazzo, F. Investigation on gold dispersion of Au/ZrO2 catalysts and activity in the low-temperature WGS reaction. Appl. Catal. B 2009, 89, 303–308, doi:10.1016/j.apcatb.2009.02.004.
[5]  Song, X.; Sayari, A. “Sulfated zirconia-based strong solid acid catalysts: recent progress”. Catal. Rev. Sci. Eng. 1996, 38, 329–412, doi:10.1080/01614949608006462.
[6]  Moseley, F.; Dyer, P.N. Method of manufacturing hydrogen peroxide. US 4,336,240, 22 June 1982.
[7]  Moreau, F.; Bond, G.C. Influence of the surface area of the support on the activity of gold catalysts for CO oxidation. Catal. Today 2007, 122, 215–221, doi:10.1016/j.cattod.2006.12.001.
[8]  Zhang, X.; Shi, H.; Xu, B. Comparative study of Au/ZrO2 catalysts in CO oxidation and 1,3-butadiene hydrogenation. Catal. Today 2007, 122, 330–337, doi:10.1016/j.cattod.2007.02.016.
[9]  Patil, N.S.; Uphade, B.S.; McCulloh, D.G.; Bhargava, S.K.; Choudary, V.R. Styrene epoxidation over gold supported on different transition metal oxides prepared by homogeneous deposition–precipitation. Catal. Commun. 2004, 5, 681–685.
[10]  Idakiev, V.; Tabakova, T.; Naydenov, A.; Yuan, Z.; Su, B. Gold catalysts supported on mesoporous zirconia for low-temperature water–gas shift reaction. Appl. Catal. B 2006, 63, 178–186, doi:10.1016/j.apcatb.2005.10.007.
[11]  Kuperman, A.; Moir, M. Method for making hydrogen using a gold containing water-gas shift catalyst. WO 2005 005032, 20 January 2005.
[12]  Li, J.; Chen, J.; Song, W.; Liu, J.; Shen, W. Influence of zirconia crystal phase on the catalytic performance of Au/ZrO2 catalysts for low-temperature water gas shift reaction. Appl. Catal. A 2008, 334, 321–329, doi:10.1016/j.apcata.2007.10.020.
[13]  Morterra, C.; Cerrato, G.; Pinna, F.; Signoretto, M. Crystal Phase, Spectral Features, and Catalytic Activity of Sulfate-Doped Zirconia Systems. J. Catal. 1995, 157, 109.
[14]  Signoretto, M.; Pinna, F.; Strukul, G.; Chies, P.; Cerrato, G.; di Ciero, S.; Morterra, C. Platinum-Promoted and Unpromoted Sulfated Zirconia Catalysts Prepared by a One-Step Aerogel Procedure. J. Catal. 1997, 167, 522–532, doi:10.1006/jcat.1997.1575.
[15]  Menegazzo, F.; Pinna, F.; Signoretto, M.; Trevisan, V.; Boccuzzi, F.; Chiorino, A.; Manzoli, M. Highly Dispersed Gold on Zirconia: Characterization and Activity in Low-Temperature Water Gas Shift Tests. ChemSusChem 2008, 1, 320–326, doi:10.1002/cssc.200700152.
[16]  Manzoli, M.; Boccuzzi, F.; Trevisan, V.; Menegazzo, F.; Signoretto, M.; Pinna, F. Au/ZrO2 catalysts for LT-WGSR: Active role of sulfates during gold deposition. Appl. Catal. B. 2010, 96, 28–33, doi:10.1016/j.apcatb.2010.01.030.
[17]  Sarzanini, C.; Sacchero, G.; Pinna, F.; Signoretto, M.; Cerrato, G.; Morterra, C. Amount and nature of sulfates at the surface of sulfate-doped zirconia catalysts. J. Mater. Chem. 1995, 5, 353–360, doi:10.1039/jm9950500353.
[18]  Moreau, F.; Bond, G.C. Preservation of the Activity of Supported Gold Catalysts for CO Oxidation. Topics Catal. 2007, 44, 95–101, doi:10.1007/s11244-007-0282-z.
[19]  Zanella, R.; Louis, C. Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples. Catal. Today 2005, 107–108, 768–777.
[20]  Lee, W.; Wan, B.; Kuo, C.; Lee, W.; Cheng, S. Maintaining catalytic activity of Au/TiO2 during the storage at room temperature. Catal. Commun. 2007, 8, 1604–1608, doi:10.1016/j.catcom.2007.01.021.
[21]  Ribeiro, N.F.P.; Bonfim, R.P.F.; Souza, M.M.V.M.; Schmal, M. Investigation of activity losses of gold nanoparticles in the CO selective oxidation. J. Power Soucers 2010, 195, 7386–7390, doi:10.1016/j.jpowsour.2010.05.035.
[22]  Tabakova, T.; Boccuzzi, F.; Manzoli, M.; Sobczak, J.W.; Idakiev, V.; Andreeva, D. Effect of synthesis procedure on the low-temperature WGS activity of Au/ceria catalysts. Appl. Catal. B 2004, 49, 73–81, doi:10.1016/j.apcatb.2003.11.014.
[23]  Andreeva, D.; Ivanov, I.; Ilieva, L.; Abrashev, M.V. Gold catalysts supported on ceria and ceria–alumina for water-gas shift reaction. Appl. Catal. A 2006, 302, 127–132, doi:10.1016/j.apcata.2006.01.009.
[24]  Chiorino, A.; Manzoli, M.; Menegazzo, F.; Signoretto, M.; Vindigni, F.; Pinna, F.; Boccuzzi, F. New insight on the nature of catalytically active gold sites: Quantitative CO chemisorption data and analysis of FTIR spectra of adsorbed CO and of isotopic mixtures. J. Catal. 2009, 262, 169–176.
[25]  Pinna, F.; Olivo, A.; Trevisan, V.; Menegazzo, F.; Signoretto, M.; Manzoli, M.; Boccuzzi, F. The effects of gold nanosize for the exploitation of furfural by selective oxidation. Catal. Today 2013, 203, 196–201, doi:10.1016/j.cattod.2012.01.033.
[26]  Signoretto, M.; Menegazzo, F.; Contessotto, L.; Pinna, F.; Manzoli, M.; Boccuzzi, F. Au/ZrO2: an efficient and reusable catalyst for the oxidative esterification of renewable furfural. Appl. Catal. B 2013, 129, 287–293, doi:10.1016/j.apcatb.2012.09.035.
[27]  Melada, S.; Signoretto, M.; Somma, F.; Pinna, F.; Cerrato, G.; Morterra, C. Gas- and Liquid-Phase Reactions on Sulphated Zirconia Prepared by Precipitation. Catal. Lett. 2004, 94, 193–198.
[28]  Signoretto, M.; Melada, S.; Pinna, F.; Polizzi, S.; Cerrato, G.; Morterra, C. Ga2O3-promoted sulfated zirconia systems: Morphological, structural and redox properties. Micr. Mes. Mater. 2005, 81, 19–29, doi:10.1016/j.micromeso.2005.01.009.
[29]  Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity, 2nd ed. ed.; Academic Press: New York, NY, USA, 1982; p. 111.
[30]  Menegazzo, F.; Pinna, F.; Signoretto, M.; Trevisan, V.; Boccuzzi, F.; Chiorino, A.; Manzoli, M. Quantitative determination of sites able to chemisorb CO on Au/ZrO2 catalysts. Appl. Catal. A 2009, 356, 31–35, doi:10.1016/j.apcata.2008.12.004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413