This study investigates a cross-section of TiO 2 compositions for which existing evidence suggests the prospect of improved performance compared to standard Degussa P25. In the context of a program aimed toward a 365 nm LED based photo-reactor, the question is whether a distinctly superior photocatalyst composition for drinking water treatment is now available that would shape design choices. An answer was sought by synthesizing several photocatalysts with reported high reactivity in some context in the literature, and by performing photocatalysts reactivity tests using common pollutants of water system including Natural Organic Matter (NOM) and Emerging Contaminants (ECs) from the pesticide and pharmaceutical classes. 365 nm Light Emitting Diodes (LEDs) were used as the irradiation source. Since LEDs are now available in the UV, we did not examine the TiO 2 modifications that bring band gap excitation into the region beyond 400 nm. The results suggest that the choice of the photocatalyst should be best made to fit the reactor design and photocatalyst mounting constraints such as mass transport, reactive surface, and light field. No photocatalyst composition overall, superior for all classes emerged.
References
[1]
Parsons, S. Advanced Oxidation Processes for Water and Waste Water Treatment; IWA: London, UK, 2004.
[2]
Comninellis, C.; Kapalka, A.; Malato, S.; Parsons, S.A.; Poulios, I.; Mantzavinos, D. Perspective advanced oxidation processes for water treatment: advances and trends for R&D. J. Chem. Technol. Biotechnol. 2008, 83, 769–776, doi:10.1002/jctb.1873.
[3]
Tayade, R.J.; Natarajan, T.S.; Bajaj, H.C. Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes. Ind. Eng. Chem. Res. 2009, 48, 10262–10267, doi:10.1021/ie9012437.
[4]
Natarajan, T.S.; Thomas, M.; Natarajan, K.; Bajaj, H.C.; Tayade, R.J. Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chem. Eng. J. 2011, 169, 126–113, doi:10.1016/j.cej.2011.02.066.
[5]
Natarajan, T.S.; Natarajan, K.; Bajaj, H.C.; Tayade, R.J. Energy efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application. Ind. Eng. Chem. Res. 2011, 50, 7753–7762, doi:10.1021/ie200493k.
[6]
Dai, K.; Lu, L.; Dawson, G. Development of UV-LED/TiO2 device and their application for photocatalytic degradation of methylene blue. J. Mater. Eng. Perform. 2013, 22, 1035–1040, doi:10.1007/s11665-012-0344-7.
[7]
Jo, W.K. Photocatalytic oxidation of low-level airborne 2-propanol and trichloroethylene over titania irradiated with bulb-type light-emitting diodes. Materials 2013, 6, 265–278, doi:10.3390/ma6010265.
[8]
Wang, Z.; Liu, J.; Dai, Y.; Dong, W.; Zhang, S.; Chen, J. CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor. J. Hazard. Mater. 2012, 215–216, 25–31, doi:10.1016/j.jhazmat.2012.02.021.
[9]
Jo, W.K.; Eun, S.S.; Shin, S.H. Feasibility of light-emitting diode uses for annular reactor inner-coated with TiO2 or nitrogen-doped TiO2 for control of dimethyl sulfide (Degussa P25). Photochem. Photobiol. 2011, 87, 1016–1023, doi:10.1111/j.1751-1097.2011.00965.x.
[10]
Sharmin, R.; Ray, M.B. Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air. J. Air Waste Manag. Assoc. 2012, 62, 1032–1039, doi:10.1080/10962247.2012.695760.
[11]
Ghosh, J.P.; Langford, C.H.; Achari, G. Characterization of an LED based photoreactor to degrade 4-Chlorophenol in an aqueous medium using coumarin (C-343) sensitized TiO2. J. Phys. Chem. A 2008, 112, 10310–10314, doi:10.1021/jp804356w.
[12]
Ghosh, J.P.; Sui, R.; Langford, C.H.; Achari, G.; Berlinguette, C.P. A comparison of several nanoscale photocatalysts in the degradation of a common pollutant using LEDs and conventional UV light. Water Res. 2009, 43, 4499–4506, doi:10.1016/j.watres.2009.07.027.
[13]
Chong, M.N.; Jin, B.; Chow, W.K.; Saint, C. Recent development in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027, doi:10.1016/j.watres.2010.02.039.
[14]
Byrne, J.A.; Fernandez-Iba?ez, P.A.; Dunlop, P.S.M.; Alrousan, D.M.A.; Hamilton, J.W.J. Photocatalytic enhancement for solar disinfection of Water: A Review. Int. J. Photoenergy 2011, 798051:1–798051:12.
[15]
Ohtani, B. Photocatalysis A to Z- what we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C 2012, 12, 157–178.
[16]
Hurum, D.C.; Agrios, A.G.; Gray, K.A. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003, 107, 4545–4549, doi:10.1021/jp0273934.
[17]
Yu, J.; Hai, Y.; Cheng, B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. J. Phys. Chem. C 2011, 115, 4953–4958, doi:10.1021/jp111562d.
[18]
Zhao, D.; Chen, C.; Yu, C.; Ma, W.; Zhao, J. Photoinduced electron storage in WO3/TiO2 nano hybride material in the presence of oxygen and post irradiated reduction of heavy metal ions. J. Phys. Chem. C 2009, 113, 13160–13165, doi:10.1021/jp9002774.
[19]
Pichat, P. Photocatalysis and Water Purification. From Fundamentals to Recent Applications; Wiley-VCH: Weinheim, Germany, 2013.
Calleja, G.; Serrano, D.; Sanz, R.; Pizarro, P.; García, A. Study on the synthesis of high-surface-area mesoporous TiO2 in the presence of nonionic surfactants. Ind. Eng. Chem. Res. 2004, 43, 2485–2492, doi:10.1021/ie030646a.
[22]
Xu, J.; Ao, Y.; Yuana, D.C. A simple route for the preparation of Eu, N-codoped TiO2 nanoparticles with enhanced visible light-induced photocatalytic activity. J. Colloid Interf. Sci. 2008, 328, 447–451, doi:10.1016/j.jcis.2008.08.053.
[23]
Lee, K.; Kim, D.; Roy, P.; Paramasivam, I.; Birajdar, B.I.; Spiecker, E.; Schmuli, P. Anodic formation of thick anatase TiO2 mesospounge layers for high efficiency photocatalysis. J. Am. Chem. Soc. 2010, 132, 1478–1479.
Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 2012, 125, 331–349, doi:10.1016/j.apcatb.2012.05.036.
[26]
Mccullagh, C.; Robertson, J.M.C.; Bahnemann, D.W.; Robertson, P.K.J. The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: A review. Res. Chem. Intermediat. 2007, 33, 359–375, doi:10.1163/156856707779238775.
[27]
Ryu, J.; Choi, Y.W. Substrate specific photocatalytic activities of TiO2 and multi-reactivity test for water treatment application. Environ. Sci. Technol. 2008, 42, 294–300, doi:10.1021/es071470x.
[28]
Chamoli, U.; Achari, G.; Langford, C.H. Self-sensitized degradation of Natural Organic Matter (NOM) using TiO2 photocatalysis with visible light. Water Res. 2013. submitted for publication.
[29]
Chamoli, U.; Izadifard, M.; Achari, G.; Langford, C.H. Coliform inhibition by Natural Organic Matter (NOM) sensitized photocatalysis under visible light. J. Water Health. 2013. submitted for publication.
[30]
Shah, S.I.; Li, W.; Huang, C.P.; Jung, O.N.C. Study of Nd3+, Pd2+, Pt4+ and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. Proc. Natl. Acad. Sci. USA 2002, 99, 6482–6486, doi:10.1073/pnas.052518299.
[31]
Xiong, Z.; Xu, Y. Photosensitized oxidation of substituted phenols on aluminum phthalocyanine intercalated organoclay. Environ. Sci. Technol. 2005, 39, 651–657, doi:10.1021/es0487630.
[32]
Stengl, V.; Bakardjiev, S.; Murafa, N. Preparation of photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater. Chem. Phys. 2009, 114, 217–226, doi:10.1016/j.matchemphys.2008.09.025.
[33]
Barakat, M.A.; Schaeffer, H.; Hayes, G.; Ismat-Shah, S. Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl. Catal. B 2004, 57, 23–30.
[34]
Hirsch, R.; Ternes, T.A.; Haberer, K.; Mehlich, A.; Ballwanz, F.; Kratz, K.L. Determination of antibiotics in different water compartments via liquid chromatography—Electrospray tandem mass spectrometry. J. Chromatogr. A 1998, 815, 213–223, doi:10.1016/S0021-9673(98)00335-5.
[35]
Yu, L.; Achari, G.; Langford, C.H. Photocatalytic degradation of 2,4-D with a LED based photoreactor. In Proceedings of 12th International Environmental Specialty Conference, Edmonton, Canada, 12–16 March 2012.
[36]
Hatchard, C.; Parker, C.A. A new sensitive chemical actinometer. II. potassium ferrioxalate as a standard chemical actinometer. Proc. R. Soc. Lond. A 1956, 235, 518–536, doi:10.1098/rspa.1956.0102.
[37]
Ma, Y.; Zhang, J.; Tian, B.; Chen, F.; Wang, L. Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity. J. Hazard. Mater. 2010, 182, 386–393, doi:10.1016/j.jhazmat.2010.06.045.
[38]
Peng, T.; Zhao, D.; Song, H.; Yan, C. Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity. J. Mol. Catal. A 2005, 236, 119–126, doi:10.1016/j.molcata.2005.04.025.
[39]
Saif, M.; Abdel-Mottaleb, M.S.A. Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: Preparation, characterization and potential applications. Inorg. Chem. Acta 2007, 360, 2863–2874, doi:10.1016/j.ica.2006.12.052.
[40]
Ranjit, K.T.; Cohen, H.; Willner, I.; Bossmann, S.; Braun, A.M. Lanthanide oxide-doped titanium dioxide: Effective photocatalysts for the degradation of organic pollutants. J. Mater. Sci. 1999, 34, 5273–5280, doi:10.1023/A:1004780401030.
[41]
Ranjit, K.T.; Willner, I.; Bossmann, S.H.; Braun, A.M. Lanthanide oxide doped titanium dioxide photocatalysts: Effective photocatalysts for the enhanced degradation of salicylic acid and t-cinnamic acid. J. Catal. 2001, 204, 305–313, doi:10.1006/jcat.2001.3388.
[42]
Quan, X.; Zhao, Q.; Tan, H.; Sang, X.; Wang, F.; Dai, Y. Comparative study of lanthanide oxide doped titanium dioxide photocatalysts prepared by co-precipitation and sol–gel process. Mater. Sci. Phys. 2009, 114, 90–98.
[43]
Xiao, Q.; Si, Z.; Yu, Z.; Qiu, G. Sol–gel auto-combustion synthesis of samarium-doped TiO2 nanoparticles and their photocatalytic activity under visible light irradiation. Mater. Sci. Eng. B 2007, 137, 189–194, doi:10.1016/j.mseb.2006.11.011.
[44]
Thomas, J.; Kumar, K.P.; Mathew, S. Hydrothermal synthesis of samarium doped nanotitania as highly efficient solar photocatalyst. Sci. Adv. Mater. 2012, 2, 481–488, doi:10.1166/sam.2010.1112.
[45]
Zhu, J.; Xie, J.; Chen, M.; Jiang, D.; Wu, D. Temperature synthesis of anatase rare earth doped titania-silica photocatalyst and its photocatalytic activity under solar-light. Colloids Surf. A 2010, 355, 178–182, doi:10.1016/j.colsurfa.2009.12.016.
[46]
Bellardita, M.; Addamo, M.; di Paola, A.; Palmisano, L. Photocatalytic behavior of metal-loaded TiO2 aqueous dispersions and films. Chem. Phys. 2007, 339, 94–103, doi:10.1016/j.chemphys.2007.06.003.
[47]
Parida, K.M.; Sahu, N. Visible light induced photocatalytic activity of rare earth titania nanocomposites. J. Mol. Catal. A 2008, 287, 151–158, doi:10.1016/j.molcata.2008.02.028.
[48]
Ding, J.; Bao, J.; Sun, S.; Luo, Z.; Gao, C. Combinatorial discovery of visible-light driven photocatalysts based on the ABO3-type (A = Y, La, Nd, Sm, Eu, Gd, Dy, Yb, B = Al and In) Binary Oxides. J. Comb. Chem. 2009, 11, 523–526, doi:10.1021/cc9000295.