Quantification of High-Molecular Weight Protein Platforms by AQUA Mass Spectrometry as Exemplified for the CD95 Death-Inducing Signaling Complex (DISC)
Contemporary quantitative mass spectrometry provides fascinating opportunities in defining the stoichiometry of high-molecular weight complexes or multiprotein platforms. The composition stoichiometry of multiprotein platforms is a key to understand the regulation of complex signaling pathways and provides a basis for constructing models in systems biology. Here we present an improved AQUA technique workflow that we adapted for the quantitative mass spectrometry analysis of the stoichiometry of the CD95 (Fas/APO-1) death inducing signaling complex (DISC). The DISC is a high-molecular weight platform essential for the initiation of CD95-mediated apoptotic and non-apoptotic responses. For protein quantification, CD95 DISCs were immunoprecipitated and proteins in the immunoprecipitations were separated by one-dimensional gel electrophoresis, followed by protein quantification using the AQUA technique. We will discuss in detail AQUA analysis of the CD95 DISC focusing on the key issues of this methodology, i.e., selection and validation of AQUA peptides. The application of this powerful method allowed getting new insights into mechanisms of procaspase-8 activation at the DISC and apoptosis initiation [1]. Here we discuss the AQUA methodology adapted by us for the analysis of the CD95 DISC in more detail. This approach paves the way for the successful quantification of multiprotein complexes and thereby delineating the intrinsic details of molecular interactions.
References
[1]
Schleich, K.; Warnken, U.; Fricker, N.; Oztürk, S.; Richter, P.; Kammerer, K.; Schn?lzer, M.; Krammer, P.H.; Lavrik, I.N. Stoichiometry of the CD95 Death-Inducing Signaling Complex: Experimental and Modeling Evidence for a Death Effector Domain Chain Model. Mol. Cell 2012, 47, 306–319, doi:10.1016/j.molcel.2012.05.006.
Lavrik, I.N. Systems biology of apoptosis signaling networks. Curr. Opin. Biotechnol. 2010, 21, 551–555.
[4]
Kirkpatrick, D.S.; Gerber, S.A.; Gygi, S.P. The absolute quantification strategy: A general procedure for the quantification of proteins and post-translational modifications. Methods 2005, 35, 265–273, doi:10.1016/j.ymeth.2004.08.018.
[5]
Gingras, A.-C.; Gstaiger, M.; Raught, B.; Aebersold, R. Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 2007, 8, 645–654, doi:10.1038/nrm2208.
[6]
Davydov, I.I.; Wohlgemuth, I.; Artamonova, I.I.; Urlaub, H.; Tonevitsky, A.G.; Rodnina, M.V. Evolution of the protein stoichiometry in the L12 stalk of bacterial and organellar ribosomes. Nat. Commun. 2013, 4, 1387, doi:10.1038/ncomms2373.
[7]
Hochleitner, E.O.; Kastner, B.; Fr?hlich, T.; Schmidt, A.; Lührmann, R.; Arnold, G.; Lottspeich, F. Protein stoichiometry of a multiprotein complex, the human spliceosomal U1 small nuclear ribonucleoprotein: Absolute quantification using isotope-coded tags and mass spectrometry. J. Biol. Chem. 2005, 280, 2536–2542.
[8]
Krammer, P.H. CD95’s deadly mission in the immune system. Nature 2000, 407, 789–795, doi:10.1038/35037728.
[9]
Krammer, P.H.; Arnold, R.; Lavrik, I.N. Life and death in peripheral T cells. Nat. Rev. Immunol. 2007, 7, 532–542, doi:10.1038/nri2115.
[10]
Ashkenazi, A.; Dixit, V.M. Death receptors: Signaling and Modulation. Science 1998, 281, 1305–1308, doi:10.1126/science.281.5381.1305.
[11]
Lavrik, I.; Golks, A.; Krammer, P.H. Death receptor signaling. J. Cell Sci. 2005, 118, 265–267, doi:10.1242/jcs.01610.
Lavrik, I.N.; Golks, A.; Krammer, P.H. Caspases: Pharmacological manipulation of cell death. J. Clin. Invest. 2005, 115, 2665–2672, doi:10.1172/JCI26252.
[14]
Hoffmann, J.C.; Pappa, A.; Krammer, P.H.; Lavrik, I.N. A new C-Terminal Cleavage Product of Procaspase-8, p30, Defines an Alternative Pathway of Procaspase-8 Activation. Mol. Cell. Biol. 2009, 29, 4431–4440, doi:10.1128/MCB.02261-07.
[15]
Strasser, A.; Jost, P.J.; Nagata, S. The Many Roles of FAS Receptor Signaling in the Immune System. Immunity 2009, 30, 180–192, doi:10.1016/j.immuni.2009.01.001.
[16]
Yan, N.; Shi, Y. Mechanisms of Apoptosis Through Structural Biology. Annu. Rev. Cell Dev. Biol. 2005, 21, 35–56, doi:10.1146/annurev.cellbio.21.012704.131040.
Scaffidi, C.; Medema, J.P.; Krammer, P.H.; Peter, M.E. FLICE is Predominantly Expressed as Two Functionally Active Isoforms, Caspase-8/a and Caspase-8/b. J. Biol. Chem. 1997, 272, 26953–26958, doi:10.1074/jbc.272.43.26953.
[19]
Scaffidi, C.; Schmitz, I.; Krammer, P.H.; Peter, M.E. The Role of c-FLIP in Modulation of CD95-induced Apoptosis. J. Biol. Chem. 1999, 274, 1541–1548, doi:10.1074/jbc.274.3.1541.
[20]
Scaffidi, C.; Volkland, J.; Blomberg, I.; Hoffmann, I.; Krammer, P.H.; Peter, M.E. Phosphorylation of FADD/ MORT1 at Serine 194 and Association with a 70-kDa Cell Cycle-Regulated Protein Kinase. J. Immunol. 2000, 164, 1236–1242.
[21]
Walczak, H.; Miller, R.E.; Ariail, K.; Gliniak, B.; Griffith, T.S.; Kubin, M.; Chin, W.; Jones, J.; Woodward, A.; Le, T.; et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 1999, 5, 157–163, doi:10.1038/5517.
[22]
Kettenbach, A.N.; Rush, J.; Gerber, S.A. Absolute quantification of protein and post-translational modification abundance with stable isotope-labeled synthetic peptides. Nat. Protoc. 2011, 6, 175–186, doi:10.1038/nprot.2010.196.
[23]
Golks, A.; Brenner, D.; Schmitz, I.; Watzl, C.; Krueger, A.; Krammer, P.H.; Lavrik, I.N. The role of CAP3 in CD95 signaling: New insights into the mechanism of procaspase-8 activation. Cell Death Differ. 2006, 13, 489–498, doi:10.1038/sj.cdd.4401766.
[24]
Lavrik, I.; Krueger, A.; Schmitz, I.; Baumann, S.; Weyd, H.; Krammer, P.H.; Kirchhoff, S. The active caspase-8 heterotetramer is formed at the CD95 DISC. Cell Death Differ. 2003, 10, 144–145, doi:10.1038/sj.cdd.4401156.
[25]
Dickens, L.S.; Boyd, R.S.; Jukes-Jones, R.; Hughes, M.A.; Robinson, G.L.; Fairall, L.; Schwabe, J.W.R.; Cain, K.; MacFarlane, M. A Death Effector Domain Chain DISC Model Reveals a Crucial Role for Caspase-8 Chain Assembly in Mediating Apoptotic Cell Death. Mol. Cell 2012, 47, 291–305, doi:10.1016/j.molcel.2012.05.004.