全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cells  2013 

The Role of Tricho-Rhino-Phalangeal Syndrome (TRPS) 1 in Apoptosis during Embryonic Development and Tumor Progression

DOI: 10.3390/cells2030496

Keywords: Trps1, apoptosis, development, tumorigenesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

TRPS1 is a GATA-type transcription factor that is closely related to human tricho-rhino-phalangeal syndrome (TRPS) types I and III, variants of an autosomal dominant skeletal disorder. During embryonic development, Trps1 represses Sox9 expression and regulates Wnt signaling pathways that determine the number of hair follicles and their normal morphogenesis. In the growth plate, Trps1 regulates chondrocytes condensation, proliferation, and maturation and phalangeal joint formation by functioning downstream of Gdf5 signaling and by targeting at Pthrp, Stat3 and Runx2. Also, Trps1 protein directly interacts with an activated form of Gli3. In embryonic kidneys, Trps1 functions downstream of BMP7 promoting the mesenchymal-to-epithelial transition, and facilitating tubule morphogenesis and ureteric bud branching. Moreover, Trps1 has been found to be closely related to tumorigenesis, invasion, and metastasis in prostate and breast cancers. It is interesting to note that during the development of hair follicles, bones, and kidneys, mutations in Trps1 cause, either directly or through crosstalk with other regulators, a notable change in cell proliferation and cell death. In this review, we will summarize the most recent studies on Trps1 and seek to elucidate the role for Trps1 in apoptotic regulation.

References

[1]  Giedion, A.; Burdea, M.; Fruchter, Z.; Meloni, T.; Trosc, V. Autosomal-dominant transmission of the tricho-rhino-phalangeal syndrome. Report of 4 unrelated families, review of 60 cases. Helvet. Paediatr. Acta 1973, 28, 249–259.
[2]  Momeni, P.; Glockner, G.; Schmidt, O.; von Holtum, D.; Albrecht, B.; Gillessen-Kaesbach, G.; Hennekam, R.; Meinecke, P.; Zabel, B.; Rosenthal, A.; et al. Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type i. Nat. Genet. 2000, 24, 71–74, doi:10.1038/71717.
[3]  Chang, G.; Steenbeek, M.; Schippers, E.; Blok, L.; van Weerden, W.; van Alewijk, D.; Eussen, B.; van Steenbrugge, G.; Brinkmann, A. Characterization of a zinc-finger protein and its association with apoptosis in prostate cancer cells. J. Natl. Cancer Inst. 2000, 92, 1414–1421, doi:10.1093/jnci/92.17.1414.
[4]  Malik, T.H.; Shoichet, S.A.; Latham, P.; Kroll, T.G.; Peters, L.L.; Shivdasani, R.A. Transcriptional repression and developmental functions of the atypical vertebrate gata protein trps1. EMBO J. 2001, 20, 1715–1725, doi:10.1093/emboj/20.7.1715.
[5]  Molkentin, J.D. The zinc finger-containing transcription factors gata-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J. Biol. Chem. 2000, 275, 38949–38952, doi:10.1074/jbc.R000029200.
[6]  Brown, K.E.; Guest, S.S.; Smale, S.T.; Hahm, K.; Merkenschlager, M.; Fisher, A.G. Association of transcriptionally silent genes with ikaros complexes at centromeric heterochromatin. Cell 1997, 91, 845–854, doi:10.1016/S0092-8674(00)80472-9.
[7]  Koipally, J.; Georgopoulos, K. Ikaros interactions with ctbp reveal a repression mechanism that is independent of histone deacetylase activity. J. Biol. Chem. 2000, 275, 19594–19602, doi:10.1074/jbc.M000254200.
[8]  Koipally, J.; Renold, A.; Kim, J.; Georgopoulos, K. Repression by ikaros and aiolos is mediated through histone deacetylase complexes. EMBO J. 1999, 18, 3090–3100, doi:10.1093/emboj/18.11.3090.
[9]  Wang, J.H.; Nichogiannopoulou, A.; Wu, L.; Sun, L.; Sharpe, A.H.; Bigby, M.; Georgopoulos, K. Selective defects in the development of the fetal and adult lymphoid system in mice with an ikaros null mutation. Immunity 1996, 5, 537–549, doi:10.1016/S1074-7613(00)80269-1.
[10]  Kaiser, F.J.; Tavassoli, K.; van den Bemd, G.J.; Chang, G.T.; Horsthemke, B.; Moroy, T.; Ludecke, H.J. Nuclear interaction of the dynein light chain lc8a with the trps1 transcription factor suppresses the transcriptional repression activity of trps1. Hum. Mol. Genet. 2003, 12, 1349–1358, doi:10.1093/hmg/ddg145.
[11]  Kaiser, F.J.; Moroy, T.; Chang, G.T.; Horsthemke, B.; Ludecke, H.J. The ring finger protein rnf4, A co-regulator of transcription, Interacts with the trps1 transcription factor. J. Biol. Chem. 2003, 278, 38780–38785.
[12]  Fantauzzo, K.A.; Christiano, A.M. Trps1 activates a network of secreted wnt inhibitors and transcription factors crucial to vibrissa follicle morphogenesis. Development 2012, 139, 203–214, doi:10.1242/dev.069971.
[13]  Kunath, M.; Ludecke, H.J.; Vortkamp, A. Expression of trps1 during mouse embryonic development. Mech. Dev. 2002, 119, S117–S120, doi:10.1016/S0925-4773(03)00103-5.
[14]  Suemoto, H.; Muragaki, Y.; Nishioka, K.; Sato, M.; Ooshima, A.; Itoh, S.; Hatamura, I.; Ozaki, M.; Braun, A.; Gustafsson, E.; et al. Trps1 regulates proliferation and apoptosis of chondrocytes through stat3 signaling. Dev. Biol. 2007, 312, 572–581.
[15]  Gai, Z.; Zhou, G.; Itoh, S.; Morimoto, Y.; Tanishima, H.; Hatamura, I.; Uetani, K.; Ito, M.; Muragaki, Y. Trps1 functions downstream of bmp7 in kidney development. J. Am. Soc. Nephrol. JASN 2009, 20, 2403–2411, doi:10.1681/ASN.2008091020.
[16]  Malik, T.H.; von Stechow, D.; Bronson, R.T.; Shivdasani, R.A. Deletion of the gata domain of trps1 causes an absence of facial hair and provides new insights into the bone disorder in inherited tricho-rhino-phalangeal syndromes. Mol. Cell. Biol. 2002, 22, 8592–8600, doi:10.1128/MCB.22.24.8592-8600.2002.
[17]  Michikami, I.; Fukushi, T.; Honma, S.; Yoshioka, S.; Itoh, S.; Muragaki, Y.; Kurisu, K.; Ooshima, T.; Wakisaka, S.; Abe, M. Trps1 is necessary for normal temporomandibular joint development. Cell Tissue Res. 2012, 348, 131–140, doi:10.1007/s00441-012-1372-1.
[18]  Radvanyi, L.; Singh-Sandhu, D.; Gallichan, S.; Lovitt, C.; Pedyczak, A.; Mallo, G.; Gish, K.; Kwok, K.; Hanna, W.; Zubovits, J.; et al. The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 11005–11010, doi:10.1073/pnas.0500904102.
[19]  Stinson, S.; Lackner, M.R.; Adai, A.T.; Yu, N.; Kim, H.J.; O’Brien, C.; Spoerke, J.; Jhunjhunwala, S.; Boyd, Z.; Januario, T.; et al. Trps1 targeting by mir-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci. Signal. 2011, 4, ra41, doi:10.1126/scisignal.2001538.
[20]  Chen, J.Q.; Bao, Y.; Litton, J.; Xiao, L.; Zhang, H.Z.; Warneke, C.L.; Wu, Y.; Shen, X.; Wu, S.; Katz, R.L.; et al. Expression and relevance of trps-1: A new gata transcription factor in breast cancer. Hormones Cancer 2011, 2, 132–143, doi:10.1007/s12672-011-0067-5.
[21]  Kobayashi, H.; Hino, M.; Inoue, T.; Nii, E.; Ikeda, K.; Son, C.; Iwakura, T.; Ishihara, T.; Ogawa, Y. Gc79/trps1 and tumorigenesis in humans. Am. J. Med. Genet. Part A 2005, 134, 341–343.
[22]  Itoh, S.; Kanno, S.; Gai, Z.; Suemoto, H.; Kawakatsu, M.; Tanishima, H.; Morimoto, Y.; Nishioka, K.; Hatamura, I.; Yoshida, M.; et al. Trps1 plays a pivotal role downstream of gdf5 signaling in promoting chondrogenesis and apoptosis of atdc5 cells. Genes Cells Devot. Mol. Cell. Mech. 2008, 13, 355–363, doi:10.1111/j.1365-2443.2008.01170.x.
[23]  Fantauzzo, K.A.; Kurban, M.; Levy, B.; Christiano, A.M. Trps1 and its target gene sox9 regulate epithelial proliferation in the developing hair follicle and are associated with hypertrichosis. PLoS Genet. 2012, 8, e1003002, doi:10.1371/journal.pgen.1003002.
[24]  Chang, G.; van den Bemd, G.; Jhamai, M. Structure and function of gc79/trps1, a novel androgen-repressible apoptosis gene. Apoptosis 2002, 7, 13–21, doi:10.1023/A:1013504710343.
[25]  Fantauzzo, K.A.; Bazzi, H.; Jahoda, C.A.; Christiano, A.M. Dynamic expression of the zinc-finger transcription factor trps1 during hair follicle morphogenesis and cycling. Gene Expr. Patterns GEP 2008, 8, 51–57, doi:10.1016/j.modgep.2007.10.006.
[26]  Akiyama, H.; Chaboissier, M.C.; Martin, J.F.; Schedl, A.; de Crombrugghe, B. The transcription factor sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of sox5 and sox6. Genes Dev. 2002, 16, 2813–2828.
[27]  Vidal, V.P.; Chaboissier, M.C.; Lutzkendorf, S.; Cotsarelis, G.; Mill, P.; Hui, C.C.; Ortonne, N.; Ortonne, J.P.; Schedl, A. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr. Biol. 2005, 15, 1340–1351, doi:10.1016/j.cub.2005.06.064.
[28]  Thomsen, M.K.; Ambroisine, L.; Wynn, S.; Cheah, K.S.; Foster, C.S.; Fisher, G.; Berney, D.M.; Moller, H.; Reuter, V.E.; Scardino, P.; et al. Sox9 elevation in the prostate promotes proliferation and cooperates with pten loss to drive tumor formation. Cancer Res. 2010, 70, 979–987, doi:10.1158/0008-5472.CAN-09-2370.
[29]  Niikawa, N.; Kamei, T. The sugio-kajii syndrome, Proposed tricho-rhino-phalangeal syndrome type III. Am. J. Med. Genet. 1986, 24, 759–760, doi:10.1002/ajmg.1320240420.
[30]  Ludecke, H.J.; Schaper, J.; Meinecke, P.; Momeni, P.; Gross, S.; von Holtum, D.; Hirche, H.; Abramowicz, M.J.; Albrecht, B.; Apacik, C.; et al. Genotypic and phenotypic spectrum in tricho-rhino-phalangeal syndrome types i and iii. Am. J. Hum. Genet. 2001, 68, 81–91, doi:10.1086/316926.
[31]  Napierala, D.; Sam, K.; Morello, R.; Zheng, Q.; Munivez, E.; Shivdasani, R.A.; Lee, B. Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal syndrome. Hum. Mol. Genet. 2008, 17, 2244–2254, doi:10.1093/hmg/ddn125.
[32]  Haga, S.; Terui, K.; Zhang, H.Q.; Enosawa, S.; Ogawa, W.; Inoue, H.; Okuyama, T.; Takeda, K.; Akira, S.; Ogino, T.; et al. Stat3 protects against fas-induced liver injury by redox-dependent and -independent mechanisms. J. Clin. Invest. 2003, 112, 989–998.
[33]  Nishioka, K.; Itoh, S.; Suemoto, H.; Kanno, S.; Gai, Z.; Kawakatsu, M.; Tanishima, H.; Morimoto, Y.; Hatamura, I.; Yoshida, M.; et al. Trps1 deficiency enlarges the proliferative zone of growth plate cartilage by upregulation of pthrp. Bone 2008, 43, 64–71, doi:10.1016/j.bone.2008.03.009.
[34]  Okoumassoun, L.; Averill-Bates, D.; Denizeau, F.; Henderson, J.E. Parathyroid hormone related protein (pthrp) inhibits tnfalpha-induced apoptosis by blocking the extrinsic and intrinsic pathways. J. Cell. Physiol. 2007, 210, 507–516, doi:10.1002/jcp.20892.
[35]  Okoumassoun, L.E.; Russo, C.; Denizeau, F.; Averill-Bates, D.; Henderson, J.E. Parathyroid hormone-related protein (pthrp) inhibits mitochondrial-dependent apoptosis through ck2. J. Cell. Physiol. 2007, 212, 591–599.
[36]  Saxen, L.; Sariola, H. Early organogenesis of the kidney. Pediatr. Nephrol. 1987, 1, 385–392, doi:10.1007/BF00849241.
[37]  Dudley, A.T.; Lyons, K.M.; Robertson, E.J. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 1995, 9, 2795–2807, doi:10.1101/gad.9.22.2795.
[38]  Gai, Z.; Zhou, G.; Gui, T.; Itoh, S.; Oikawa, K.; Uetani, K.; Muragaki, Y. Trps1 haploinsufficiency promotes renal fibrosis by increasing arkadia expression. J. Am. Soc. Nephrol. JASN 2010, 21, 1468–1476, doi:10.1681/ASN.2009121201.
[39]  Gui, T.; Sun, Y.; Gai, Z.; Shimokado, A.; Muragaki, Y.; Zhou, G. The loss of trps1 suppresses ureteric bud branching because of the activation of tgf-beta signaling. Dev. Biol. 2013, 377, 415–427, doi:10.1016/j.ydbio.2013.03.014.
[40]  Bush, K.T.; Sakurai, H.; Steer, D.L.; Leonard, M.O.; Sampogna, R.V.; Meyer, T.N.; Schwesinger, C.; Qiao, J.; Nigam, S.K. Tgf-beta superfamily members modulate growth, Branching, Shaping, And patterning of the ureteric bud. Dev. Biol. 2004, 266, 285–298, doi:10.1016/j.ydbio.2003.10.023.
[41]  Michael, L.; Davies, J.A. Pattern and regulation of cell proliferation during murine ureteric bud development. J. Anat. 2004, 204, 241–255, doi:10.1111/j.0021-8782.2004.00285.x.
[42]  Koseki, C.; Herzlinger, D.; al-Awqati, Q. Apoptosis in metanephric development. J. Cell Biol. 1992, 119, 1327–1333, doi:10.1083/jcb.119.5.1327.
[43]  Porteous, S.; Torban, E.; Cho, N.; Cunliffe, H.; Chua, L.; McNoe, L.; Ward, T.; Souza, C.; Gus, P.; Giugliani, R.; et al. Primary renal hypoplasia in humans and mice with pax2 mutations: Evidence of increased apoptosis in fetal kidneys of pax2(1neu)+/? mutant mice. Hum. Mol. Genet. 2000, 9, 1–11, doi:10.1093/hmg/9.1.1.
[44]  Kondo, S.; Oakes, M.G.; Sorenson, C.M. Rescue of renal hypoplasia and cystic dysplasia in bcl-2?/? mice expressing bcl-2 in ureteric bud derived epithelia. Dev. Dynam. 2008, 237, 2450–2459, doi:10.1002/dvdy.21678.
[45]  Hilliard, S.; Aboudehen, K.; Yao, X.; El-Dahr, S.S. Tight regulation of p53 activity by mdm2 is required for ureteric bud growth and branching. Dev. Biol. 2011, 353, 354–366, doi:10.1016/j.ydbio.2011.03.017.
[46]  Arnould, C.; Lelievre-Pegorier, M.; Ronco, P.; Lelongt, B. Mmp9 limits apoptosis and stimulates branching morphogenesis during kidney development. J. Am. Soc. Nephrol. 2009, 20, 2171–2180, doi:10.1681/ASN.2009030312.
[47]  Chang, G.; Blok, L.; Steenbeek, M.; Veldscholte, J.; van Weerden, W.; van Steenbrugge, G.; Brinkmann, A. Differentially expressed genes in androgen-dependent and -independent prostate carcinomas. Cancer Res. 1997, 57, 4075–4081.
[48]  Chang, G.T.; Jhamai, M.; van Weerden, W.M.; Jenster, G.; Brinkmann, A.O. The trps1 transcription factor: Androgenic regulation in prostate cancer and high expression in breast cancer. Endocrine Relat. Cancer 2004, 11, 815–822, doi:10.1677/erc.1.00853.
[49]  Kyprianou, N.; Isaacs, J.T. Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 1988, 122, 552–562, doi:10.1210/endo-122-2-552.
[50]  Pang, S.T.; Dillner, K.; Wu, X.; Pousette, A.; Norstedt, G.; Flores-Morales, A. Gene expression profiling of androgen deficiency predicts a pathway of prostate apoptosis that involves genes related to oxidative stress. Endocrinology 2002, 143, 4897–4906, doi:10.1210/en.2002-220327.
[51]  Chang, G.T.; Gamble, S.C.; Jhamai, M.; Wait, R.; Bevan, C.L.; Brinkmann, A.O. Proteomic analysis of proteins regulated by trps1 transcription factor in du145 prostate cancer cells. Biochim. Biophys. Acta 2007, 1774, 575–582, doi:10.1016/j.bbapap.2007.03.011.
[52]  Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature 2005, 434, 843–850, doi:10.1038/nature03319.
[53]  Zhang, T.; Otevrel, T.; Gao, Z.; Ehrlich, S.M.; Fields, J.Z.; Boman, B.M. Evidence that apc regulates survivin expression: A possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res. 2001, 61, 8664–8667.
[54]  Shtutman, M.; Zhurinsky, J.; Simcha, I.; Albanese, C.; D’Amico, M.; Pestell, R.; Ben-Ze’ev, A. The cyclin d1 gene is a target of the beta-catenin/lef-1 pathway. Proc. Natl. Acad. Sci. USA 1999, 96, 5522–5527.
[55]  He, T.C.; Sparks, A.B.; Rago, C.; Hermeking, H.; Zawel, L.; da Costa, L.T.; Morin, P.J.; Vogelstein, B.; Kinzler, K.W. Identification of c-myc as a target of the apc pathway. Science 1998, 281, 1509–1512, doi:10.1126/science.281.5382.1509.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413