全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cells  2013 

Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore

DOI: 10.3390/cells2030506

Keywords: keyword, rule-based, modeling, simulation, 3D space, SRSim software, kinetochore structure, spindle assembly checkpoint, mitosis, structural analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models.

References

[1]  Perpelescu, M.; Fukagawa, T. The ABCs of CENPs. Chromosoma 2011, 120, 425–446.
[2]  Jaspersen, S.L.; Winey, M. The budding yeast spindle pole body: Structure, duplication, and function. Annu. Rev. Cell Dev. Biol 2004, 20, 1–28.
[3]  Hlavacek, W.S.; Faeder, J.R.; Blinov, M.L.; Perelson, A.S.; Goldstein, B. The complexity of complexes in signal transduction. Biotechnol. Bioeng 2003, 84, 783–794.
[4]  Harris, L.A.; Hogg, J.; Faeder, J.R. Compartmental Rule-Based Modeling of Biochemical Systems. Proceedings of the 2009 Winter Simulation Conference (WSC), Austin, TX, USA, 13–16 December 2009; pp. 908–919.
[5]  Klipp, E.; Liebermeister, W.; Wierling, C.; Kowald, A.; Lehrach, H.; Herwig, R. Systems Biology; Wiley-VCH: Weihnheim, Germany, 2009.
[6]  Faeder, J.R.; Blinov, M.L.; Hlavacek, W.S. Rule-based modeling of biochemical systems with BioNetGen. Methods Mol. Biol 2009, 500, 113–167.
[7]  Faeder, J.R.; Blinov, M.L.; Hlavacek, W.S. Graphical Rule-based Representation of Signal-transduction Networks. Proceedings of the ACM Symposium on Applied Computing, Santa Fe, NM, USA, 13–17 March 2005; pp. 133–140.
[8]  Blinov, M.L.; Faeder, J.R.; Goldstein, B.; Hlavacek, W.S. BioNetGen: Software for rule-based modeling of signal transduction based on the interactions of molecular domains. Method Biochem. Anal 2004, 20, 3289–3291.
[9]  Klann, M.; Koeppl, H. Spatial simulations in systems biology: From molecules to cells. Int. J. Mol. Sci 2012, 13, 7798–7827.
[10]  Faeder, J.R. Toward a comprehensive language for biological systems. BMC Biol. 2011, 9.
[11]  Machado, D.; Costa, R.S.; Rocha, M.; Ferreira, E.C.; Tidor, B.; Rocha, I. Modeling formalisms in systems biology. AMB Express 2011, 1, doi:10.1186/2191-0855-l-45.
[12]  Dittrich, P.; Ziegler, J.; Banzhaf, W. Artificial chemistries—A review. Artif. Life 2001, 7, 225–275.
[13]  Gruenert, G.; Ibrahim, B.; Lenser, T.; Lohel, M.; Hinze, T.; Dittrich, P. Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinforma. 2010, 11, doi:10.1186/1471-2105-11-307.
[14]  Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys 1995, 117, 1–19.
[15]  Santaguida, S.; Musacchio, A. The life and miracles of kinetochores. Embo J 2009, 28, 2511–2531.
[16]  Thompson, S.L.; Bakhoum, S.F.; Compton, D.A. Mechanisms of chromosomal instability. Curr. Biol 2010, 20, R285–R295.
[17]  Cimini, D.; Degrassi, F. Aneuploidy: A matter of bad connections. Trends Cell Biol 2005, 15, 442–451.
[18]  Williams, B.R.; Prabhu, V.R.; Hunter, K.E.; Glazier, C.M.; Whittaker, C.A.; Housman, D.E.; Amon, A. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 2008, 322, 703–709.
[19]  Suijkerbuijk, S.J.; Kops, G.J. Preventing aneuploidy: The contribution of mitotic checkpoint proteins. Biochim. Biophys. Acta 2008, 1786, 24–31.
[20]  Holland, A.J.; Cleveland, D.W. Boveri revisited: Chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol 2009, 10, 478–487.
[21]  Li, M.; Fang, X.; Wei, Z.; York, J.P.; Zhang, P. Loss of spindle assembly checkpoint-mediated inhibition of Cdc20 promotes tumorigenesis in mice. J. Cell Biol 2009, 185, 983–994.
[22]  Danos, V.; Laneve, C. Formal molecular biology. Lect. Notes Comput. Sci 2004, 325, 69–110.
[23]  Doncic, A.; Ben-Jacob, E.; Barkai, N. Evaluating putative mechanisms of the mitotic spindle checkpoint. Proc. Natl. Acad. Sci. USA 2005, 102, 6332–6337.
[24]  Biosystemanalyse. Available online: http://www.biosys.uni-jena.de/ (accessed on July 2013).
[25]  Brown, J.H.; Jardetzky, T.S.; Gorga, J.C.; Stern, L.J.; Urban, R.G.; Strominger, J.L.; Wiley, D.C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993, 364, 33–39.
[26]  Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C.; Motoshima, H.; Fox, B.; LeTrong, I.; Teller, D.; Okada, T.; Stenkamp, R.; et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000, 4, 739–745.
[27]  Vogel, R.; Mahalingam, M.; Ludeke, S.; Huber, T.; Siebert, E.; Sakmar, T.P. Functional role of the “ionic lock”—An interhelical hydrogen-bond network in family A heptahelical receptors. J. Mol. Biol 2008, 380, 648–655.
[28]  Standfuss, J.; Zaitseva, E.; Mahalingam, M.; Vogel, R. Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin. J. Mol. Biol 2008, 380, 145–157.
[29]  Cross, G.H.; Reeves, A.A.; Brand, S.; Popplewell, J.F.; Peel, L.L.; Swann, M.J.; Freeman, N.J. A new quantitative optical biosensor for protein characterisation. Biosens. Bioelectron 2003, 19, 383–390.
[30]  Moritz, M.; Braunfeld, M.B.; Guenebaut, V.; Heuser, J.; Agard, D.A. Structure of the gamma-tubulin ring complex: A template for microtubule nucleation. Nat. Cell Biol 2000, 2, 365–370.
[31]  Wiese, C.; Zheng, Y. A new function for the gamma-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol 2000, 2, 358–364.
[32]  Keating, T.J.; Borisy, G.G. Immunostructural evidence for the template mechanism of microtubule nucleation. Nat. Cell Biol 2000, 2, 352–357.
[33]  Kreyssig, P.; Escuela, G.; Reynaert, B.; Veloz, T.; Ibrahim, B.; Dittrich, P. Cycles and the qualitative evolution of chemical systems. PLoS One 2012, 7, e45772.
[34]  Deng, C.; Xiong, X.; Krutchinsky, A.N. Unifying fluorescence microscopy and mass spectrometry for studying protein complexes in cells. Mol. Cell Proteomics 2009, 8, 1413–1423.
[35]  Magde, D.; Elson, E.; Webb, W.W. Thermodynamic fluctuations in a reacting system-Measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett 1972, 29, 705–708.
[36]  Foldes-Papp, Z. What it means to measure a single molecule in a solution by fluorescence fluctuation spectroscopy. Exp. Mol. Pathol 2006, 80, 209–218.
[37]  Elson, E.L. Fluorescence correlation spectroscopy: Past, present, future. Biophys. J 2011, 101, 2855–2870.
[38]  Ishikawa-Ankerhold, H.C.; Ankerhold, R.; Drummen, G.P. Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012, 17, 4047–4132.
[39]  Fields, S.; Song, O. A novel genetic system to detect protein-protein interactions. Nature 1989, 340, 245–246.
[40]  Braun, P.; Tasan, M.; Dreze, M.; Barrios-Rodiles, M.; Lemmens, I.; Yu, H.; Sahalie, J.M.; Murray, R.R.; Roncari, L.; de Smet, A.S.; et al. An experimentally derived confidence score for binary protein-protein interactions. Nat. Methods 2009, 6, 91–97.
[41]  Monti, M.; Orru, S.; Pagnozzi, D.; Pucci, P. Interaction proteomics. Biosci. Rep 2005, 25, 45–56.
[42]  Phee, B.K.; Shin, D.H.; Cho, J.H.; Kim, S.H.; Kim, J.I.; Lee, Y.H.; Jeon, J.S.; Bhoo, S.H.; Hahn, T.R. Identification of phytochrome-interacting protein candidates in Arabidopsis thaliana by co-immunoprecipitation coupled with MALDI-TOF MS. Proteomics 2006, 6, 3671–3680.
[43]  Ren, L.; Emery, D.; Kaboord, B.; Chang, E.; Qoronfleh, M.W. Improved immunomatrix methods to detect protein: Protein interactions. J. Biochem. Biophys. Methods 2003, 57, 143–157.
[44]  Puig, O.; Caspary, E.; Rigaut, G.; Rutz, B.; Bouveret, E.; Bragado-Nilsson, E.; Wilm, M.; Seraphin, B. The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods 2001, 24, 218–229.
[45]  Kuntz, I.D.; Blaney, J.M.; Oatley, S.J.; Langridge, R.; Ferrin, T.E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol 1982, 161, 269–288.
[46]  Pazos, F.; Valencia, A. Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 2001, 14, 609–614.
[47]  Snel, B.; Lehmann, G.; Bork, P.; Huynen, M.A. STRING: A web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 2000, 28, 3442–3444.
[48]  Obuse, C.; Iwasaki, O.; Kiyomitsu, T.; Goshima, G.; Toyoda, Y.; Yanagida, M. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat. Cell Biol 2004, 6, 1135–1141.
[49]  Weidtkamp-Peters, S.; Lenser, T.; Negorev, D.; Gerstner, N.; Hofmann, T.G.; Schwanitz, G.; Hoischen, C.; Maul, G.; Dittrich, P.; Hemmerich, P. Dynamics of component exchange at PML nuclear bodies. J. Cell Sci 2008, 121, 2731–2743.
[50]  F?rster, T. Intermolecular energy migration and fluorescence. Ann. Phys 1948, 437, 55–75.
[51]  Jares-Erijman, E.A.; Jovin, T.M. FRET imaging. Nat. Biotechnol 2003, 21, 1387–1395.
[52]  Periasamy, A.; Day, R.N. Visualizing protein interactions in living cells using digitized GFP imaging and FRET microscopy. Methods Cell Biol 1999, 58, 293–314.
[53]  Hevekerl, H.; Spielmann, T.; Chmyrov, A.; Widengren, J. F?rster resonance energy transfer beyond 10 nm: Exploiting the triplet state kinetics of organic fluorophores. Ann. Phys 1948, 2, 55–75.
[54]  Grünert, G.; Dittrich, P. Using the SRSim Software for Spatial and Rule-Based Modeling of Combinatorially Complex Biochemical Reaction Systems. In Membrane Computing; Gheorghe, M., Hinze, T., Paun, G., Rozenberg, G., Salomaa, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6501, pp. 240–256.
[55]  Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual molecular dynamics. J.Mol. Graphics 1996, 14, 33–38.
[56]  Tschernyschkow, S.; Herda, S.; Gruenert, G.; D?ring, V.; Gorlich, D.; Hofmeister, A.; Hoischen, C.; Dittrich, P.; Diekmann, S.; Ibrahim, B. Rule-based modeling and simulations of the inner kinetochore structure. In Prog. Biophys. Mol. Biol.; 2013. press.
[57]  Sokal, R.R.; Michener, C.D. A statistical method for evaluating systematic relationships. Kans. Univ. Sci. Bull 1958, 38, 1409–1438.
[58]  Morin, M.M.; Moret, B.M. NETGEN: Generating phylogenetic networks with diploid hybrids. Method Biochem. Anal 2006, 22, 1921–1923.
[59]  Ibrahim, B.; Dittrich, P.; Diekmann, S.; Schmitt, E. Mad2 binding is not sufficient for complete Cdc20 sequestering in mitotic transition control (an in silico study). Biophys. Chem 2008, 134, 93–100.
[60]  Orthaus, S.; Biskup, C.; Hoffmann, B.; Hoischen, C.; Ohndorf, S.; Benndorf, K.; Diekmann, S. Assembly of the inner kinetochore proteins CENP-A and CENP-B in living human cells. ChemBioChem 2008, 9, 77–92.
[61]  Hellwig, D.; Emmerth, S.; Ulbricht, T.; D?ring, V.; Hoischen, C.; Martin, R.; Samora, C.P.; McAinsh, A.D.; Carroll, C.W.; Straight, A.F.; et al. Dynamics of CENP-N kinetochore binding during the cell cycle. J. Cell Sci 2011, 124, 3871–3883.
[62]  Carroll, C.W.; Silva, M.C.; Godek, K.M.; Jansen, L.E.; Straight, A.F. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat. Cell Biol 2009, 11, 896–902.
[63]  Carroll, C.W.; Milks, K.J.; Straight, A.F. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol 2010, 189, 1143–1155.
[64]  Przewloka, M.R.; Venkei, Z.; Bolanos-Garcia, V.M.; Debski, J.; Dadlez, M.; Glover, D.M. CENP-C is a structural platform for kinetochore assembly. Curr. Biol 2011, 21, 399–405.
[65]  Eskat, A.; Deng, W.; Hofmeister, A.; Rudolphil, S.; Emmerth, S.; Hellwig, D.; Ulbricht, T.; D?ring, V.; Bancroft, J.M.; McAinsh, A.D.; et al. Step-wise assembly, maturation and dynamic behavior of the human CENP-P/O/R/Q/U kinetochore sub-complex. PLoS One 2012, 7, e44717.
[66]  Hellwig, D.; Hoischen, C.; Ulbricht, T.; Diekmann, S. Acceptor-photobleaching FRET analysis of core kinetochore and NAC proteins in living human cells. Eur. Biophys. J 2009, 38, 781–791.
[67]  Suzuki, N.; Nakano, M.; Nozaki, N.; Egashira, S.I.; Okazaki, T.; Masumoto, H. CENP-B interacts with CENP-C domains containing Mif2 regions responsible for centromere localization. J. Biol. Chem 2004, 279, 5934–5946.
[68]  Nishino, T.; Takeuchi, K.; Gascoigne, K.E.; Suzuki, A.; Hori, T.; Oyama, T.; Morikawa, K.; Cheeseman, I.M.; Fukagawa, T. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 2012, 148, 487–501.
[69]  Amano, M.; Suzuki, A.; Hori, T.; Backer, C.; Okawa, K.; Cheeseman, I.M.; Fukagawa, T. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J. Cell Biol 2009, 186, 173–182.
[70]  Hori, T.; Amano, M.; Suzuki, A.; Backer, C.B.; Welburn, L.P.; Dong, Y.; McEwen, B.F.; Shang, W.H.; Suzuki, E.; Okawa, K.; et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 2008, 135, 1039–1052.
[71]  Obuse, C.; Iwasaki, O.; Kiyomitsu, T.; Goshima, G.; Toyoda, Y.; Yanagida, M. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat. Cell Biol 2004, 6, 1135–1141.
[72]  Petrovic, A.; Pasqualato, S.; Dube, P.; Krenn, V.; Santaguida, S.; Cittaro, D.; Monzani, S.; Massimiliano, L.; Keller, J.; Tarricone, A.; et al. The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J. Cell Biol 2010, 190, 835–852.
[73]  Bock, L.J.; Pagliuca, C.; Kobayashi, N.; Grove, R.A.; Oku, Y.; Shrestha, K.; Alfieri, C.; Golfieri, C.; Oldani, A.; Dal Maschio, M.; et al. Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat. Cell Biol 2012, 14, 614–624.
[74]  McCleland, M.L.; Kallio, M.J.; Barrett-Wilt, G.A.; Kestner, C.A.; Shabanowitz, J.; Hunt, D.F.; Gorbsky, G.J.; Stukenberg, P.T. The vertebrate Ndc80 complex contains Spc24 and Spc25 homologs, which are required to establish and maintain kinetochore-microtubule attachment. Curr.Biol 2004, 14, 131–137.
[75]  Janke, C.; Ortiz, J.; Lechner, J.; Shevchenko, A.; Shevchenko, A.; Magiera, M.M.; Schramm, C.; Schiebel, E. The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. EMBO J 2001, 20, 111–191.
[76]  Bharadwaj, R.; Qi, W.; Yu, H. Identification of two novel components of the human NDC80 kinetochore complex. J. Biol. Chem 2004, 279, 13076–13085.
[77]  Schleiffer, A.; Maier, M.; Litos, G.; Lampert, E.; Hornung, P.; Mechtler, K.; Westermann, S. CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat. Cell Biol 2012, 14, 604–613.
[78]  Nishino, T.; Rago, E.; Hori, T.; Tomii, K.; Cheeseman, I.M.; Fukagawa, T. CENP-T provides a structural platform for outer kinetochore assembly. EMBO J 2013, 32, 424–436.
[79]  De Antoni, A.; Pearson, C.G.; Cimini, D.; Canman, J.C.; Sala, V.; Nezi, L.; Mapelli, M.; Sironi, L.; Faretta, M.; Salmon, E.D.; et al. The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr. Biol 2005, 15, 214–225.
[80]  Lad, L.; Lichtsteiner, S.; Hartman, J.J.; Wood, K.W.; Sakowicz, R. Kinetic analysis of Mad2-Cdc20 formation: Conformational changes in Mad2 are catalyzed by a C-Mad2-ligand complex. Adv. Exp. Med. Biol 2009, 48, 9503–9515.
[81]  Luo, X.; Tang, Z.; Rizo, J.; Yu, H. The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol. Cell 2002, 9, 59–71.
[82]  Fang, G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol. Biol. Cell 2002, 13, 755–766.
[83]  Lara-Gonzalez, P.; Scott, M.I.; Diez, M.; Sen, O.; Taylor, S.S. BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. J. Cell Sci 2011, 124, 4332–345.
[84]  Davenport, J.; Harris, L.D.; Goorha, R. Spindle checkpoint function requires Mad2-dependent Cdc20 binding to the Mad3 homology domain of BubR1. Exp. Cell Res 2006, 312, 1831–1842.
[85]  Kulukian, A.; Han, J.S.; Cleveland, D.W. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev. Cell 2009, 16, 105–117.
[86]  Foster, S.A.; Morgan, D.O. The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation. Mol. Cell 2012, 47, 921–932.
[87]  Zhang, Y.; Lees, E. Identification of an overlapping binding domain on Cdc20 for Mad2 and anaphase-promoting complex: Model for spindle checkpoint regulation. Mol. Cell. Biol 2001, 21, 5190–5199.
[88]  Chen, R.H.; Brady, D.M.; Smith, D.; Murray, A.W.; Hardwick, K.G. The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol. Biol. Cell 1999, 10, 2607–2618.
[89]  Sironi, L.; Melixetian, M.; Faretta, M.; Prosperini, E.; Helin, K.; Musacchio, A. Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint. EMBO J 2001, 20, 6371–6382.
[90]  Chung, E.; Chen, R.H. Spindle checkpoint requires Mad1-bound and Mad1-free Mad2. Mol. Biol. Cell 2002, 13, 1501–1511.
[91]  Buffin, E.; Lefebvre, C.; Huang, J.; Gagou, M.E.; Karess, R.E. Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr. Biol 2005, 15, 856–861.
[92]  Chan, G.K.; Jablonski, S.A.; Starr, D.A.; Goldberg, M.L.; Yen, T.J. Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nat. Cell Biol 2000, 2, 944–947.
[93]  Kim, S.; Sun, H.; Tomchick, D.R.; Yu, H.; Luo, X. Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting. Proc. Natl. Acad. Sci. USA 2012, 109, 6549–6554.
[94]  Taylor, S.S.; Ha, E.; McKeon, F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol 1998, 142, 1–11.
[95]  Wang, X.; Babu, J.R.; Harden, J.M.; Jablonski, S.A.; Gazi, M.H.; Lingle, W.L.; de Groen, P.C.; Yen, T.J.; van Deursen, J.M. The mitotic checkpoint protein hBUB3 and the mRNA export factor hRAE1 interact with GLE2p-binding sequence (GLEBS)-containing proteins. J. Biol. Chem 2001, 276, 26559–26567.
[96]  Sudakin, V.; Chan, G.K.; Yen, T.J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol 2001, 154, 925–936.
[97]  Larsen, N.A.; A1-Bassam, J.; Wei, R.R.; Harrison, S.C. Structural analysis of Bub3 interactions in the mitotic spindle checkpoint. Proc. Natl. Acad. Sci. USA 2007, 104, 1201–1206.
[98]  Skoufias, D.A.; Andreassen, P.R.; Lacroix, F.B.; Wilson, L.; Margolis, R.L. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc. Natl. Acad. Sci. USA 2001, 98, 4492–4497.
[99]  Kiyomitsu, T.; Obuse, C.; Yanagida, M. Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev. Cell 2007, 13, 663–676.
[100]  Krenn, V.; Wehenkel, A.; Li, X.; Santaguida, S.; Musacchio, A. Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction. J. Cell Biol 2012, 196, 451–467.
[101]  Kiyomitsu, T.; Murakami, H.; Yanagida, M. Protein interaction domain mapping of human kinetochore protein Blinkin reveals a consensus motif for binding of spindle assembly checkpoint proteins Bub1 and BubR1. Mol. Cell. Biol 2011, 31, 998–1011.
[102]  Bolanos-Garcia, V.M.; Lischetti, T.; Matak-Vinkovic, D.; Cota, E.; Simpson, P.J.; Chirgadze, D.Y.; Spring, D.R.; Robinson, C.V.; Nilsson, J.; Blundell, T.L. Structure of a Blinkin-BUBR1 complex reveals an interaction crucial for kinetochore-mitotic checkpoint regulation via an unanticipated binding Site. Structure 2011, 19, 1691–1700.
[103]  Izawa, D.; Pines, J. How APC/C-Cdc20 changes its substrate specificity in mitosis. Nat. Cell Biol 2011, 13, 223–233.
[104]  Herzog, F.; Primorac, I.; Dube, P.; Lenart, P.; Sander, B.; Mechtler, K.; Stark, H.; Peters, J.M. Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science 2009, 323, 1477–1481.
[105]  Sedgwick, G.G.; Hayward, D.G.; di Fiore, B.; Pardo, M.; Yu, L.; Pines, J.; Nilsson, J. Mechanisms controlling the temporal degradation of Nek2A and Kif18A by the APC/C-Cdc20 complex. EMBO J 2013, 32, 303–314.
[106]  Hutchins, J.R.; Toyoda, Y.; Hegemann, B.; Poser, I.; Heriche, J.K.; Sykora, M.M.; Augsburg, M.; Hudecz, O.; Buschhorn, B.A.; Bulkescher, J.; et al. Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 2010, 328, 593–599.
[107]  Lee, S.; Thebault, P.; Freschi, L.; Beaufils, S.; Blundell, T.L.; Landry, C.R.; Bolanos-Garcia, V.M.; Elowe, S. Characterization of spindle checkpoint kinase Mps1 reveals domain with functional and structural similarities to tetratricopeptide repeat motifs of Bub1 and BubR1 checkpoint kinases. J. Biol. Chem 2012, 287, 5988–6001.
[108]  Kops, G.J.; Kim, Y.; Weaver, B.A.; Mao, Y.; McLeod, I.; Yates, J.R.; Tagaya, M.; Cleveland, D.W. ZW10 links mitotic checkpoint signaling to the structural kinetochore. J. Cell Biol 2005, 169, 49–60.
[109]  Jelluma, N.; Dansen, T.B.; Sliedrecht, T.; Kwiatkowski, N.P.; Kops, G.J. Release of Mps1 from kinetochores is crucial for timely anaphase onset. J. Cell Biol 2010, 191, 281–290.
[110]  Kemmler, S.; Stach, M.; Knapp, M.; Ortiz, J.; Pfannstiel, J.; Ruppert, T.; Lechner, J. Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling. EMBO J 2009, 28, 1099–1110.
[111]  Wang, H.; Hu, X.; Ding, X.; Dou, Z.; Yang, Z.; Shaw, A.W.; Teng, M.; Cleveland, D.W.; Goldberg, M.L.; Niu, L.; et al. Human Zwint-1 specifies localization of Zeste White 10 to kinetochores and is essential for mitotic checkpoint signaling. J. Biol. Chem 2004, 279, 54590–54598.
[112]  Starr, D.A.; Saffery, R.; Li, Z.; Simpson, A.E.; Choo, K.H.; Yen, T.J.; Goldberg, M.L. HZwint-1, a novel human kinetochore component that interacts with HZW10. J. Cell Sci 2000, 113, 1939–1950.
[113]  Cheeseman, I.M.; Niessen, S.; Anderson, S.; Hyndman, F.; Yates, J.R.; Oegema, K.; Desai, A. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev 2004, 18, 2255–2268.
[114]  Starr, D.A.; Williams, B.C.; Hays, T.S.; Goldberg, M.L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol 1998, 142, 763–774.
[115]  Williams, B.C.; Li, Z.; Liu, S.; Williams, E.V.; Leung, G.; Yen, T.J.; Goldberg, M.L. Zwilch, a new component of the ZW10/ROD complex required for kinetochore functions. Mol. Biol. Cell 2003, 14, 1379–1391.
[116]  Civril, F.; Wehenkel, A.; Giorgi, F.M.; Santaguida, S.; di Fonzo, A.; Grigorean, G.; Ciccarelli, F.D.; Musacchio, A. Structural analysis of the RZZ complex reveals common ancestry with multisubunit vesicle tethering machinery. Structure 2010, 18, 616–626.
[117]  Okada, M.; Cheeseman, I.M.; Hori, T.; Okawa, K.; McLeod, I.X.; Yates, J.R.; Desai, A.; Fukagawa, T. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol 2006, 8, 446–457.
[118]  Dalai, Y.; Bui, M. Down the rabbit hole of centromere assembly and dynamics. Curr. Opin. Cell Biol 2010, 22, 392–402.
[119]  Black, B.E.; Cleveland, D.W. Epigenetic centromere propagation and the nature of CENP-A nucleosomes. Cell 2011, 144, 471–479.
[120]  Maiato, H.; DeLuca, J.; Salmon, E.D.; Earnshaw, W.C. The dynamic kinetochore-microtubule interface. J. Cell Sci 2004, 117, 5461–5477.
[121]  Cheeseman, I.M.; Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol 2008, 9, 33–46.
[122]  Jeyaprakash, A.A.; Santamaria, A.; Jayachandran, U.; Chan, Y.W.; Benda, C.; Nigg, E.A.; Conti, E. Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface. Mol. Cell 2012, 46, 274–286.
[123]  Minshull, J.; Sun, H.; Tonks, N.K.; Murray, A.W. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 1994, 79, 475–486.
[124]  King, R.W.; Peters, J.M.; Tugendreich, S.; Rolfe, M.; Hieter, P.; Kirschner, M.W. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 1995, 81, 279–288.
[125]  Sethi, N.; Monteagudo, M.C.; Koshland, D.; Hogan, E.; Burke, D.J. The CDC20 gene product of Saccharomyces cerevisiae, a beta-transducin homolog, is required for a subset of microtubule-dependent cellular processes. Mol. Cell. Biol 1991, 11, 5592–5602.
[126]  Sudakin, V.; Ganoth, D.; Dahan, A.; Heller, H.; Hershko, J.; Luca, F.C.; Ruderman, J.V.; Hershko, A. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 1995, 6, 185–197.
[127]  Shirayama, M.; Zachariae, W.; Ciosk, R.; Nasmyth, K. The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J 1998, 17, 1336–1349.
[128]  Li, R.; Murray, A.W. Feedback control of mitosis in budding yeast. Cell 1991, 66, 519–531.
[129]  Hoyt, M.A.; Totis, L.; Roberts, B.T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 1991, 66, 507–517.
[130]  Fisk, H.A.; Mattison, C.P.; Winey, M. A field guide to the Mps1 family of protein kinases. Cell Cycle 2004, 3, 439–442.
[131]  Lu, Y.; Wang, Z.; Ge, L.; Chen, N.; Liu, H. The RZZ complex and the spindle assembly checkpoint. Cell Struct. Funct 2009, 34, 31–45.
[132]  Musacchio, A.; Salmon, E.D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol 2007, 8, 379–393.
[133]  Lohel, M.; Ibrahim, B.; Diekmann, S.; Dittrich, P. The role of localization in the operation of the mitotic spindle assembly checkpoint. Cell Cycle 2009, 8, 2650–2660.
[134]  Ibrahim, B.; Schmitt, E.; Dittrich, P.; Diekmann, S. In silico study of kinetochore control, amplification, and inhibition effects in MCC assembly. Biosystems 2009, 95, 35–50.
[135]  Ibrahim, B.; Diekmann, S.; Schmitt, E.; Dittrich, P. In-silico modeling of the mitotic spindle assembly checkpoint. PLoS One 2008, 3, el555.
[136]  Ibrahim, B.; Dittrich, P.; Diekmann, S.; Schmitt, E. Stochastic effects in a compartmental model for mitotic checkpoint regulation. J. Integr. Bioinform. 2007, 4, doi:10.2390/biecoll-jib-2007-66.
[137]  Simonetta, M.; Manzoni, R.; Mosca, R.; Mapelli, M.; Massimiliano, L.; Vink, M.; Novak, B.; Musacchio, A.; Ciliberto, A. The influence of catalysis on mad2 activation dynamics. PLoS Biol 2009, 7, e10.
[138]  Caydasi, A.K.; Lohel, M.; Gruenert, G.; Dittrich, P.; Pereira, G.; Ibrahim, B. Dynamical model of the Spindle Position Checkpoint. Mol. Syst. Biol. 2012, 8, doi:10.1038/msb.2012.15.
[139]  Hoischen, C.; Bussiek, M.; Langowski, J.; Diekmann, S. Escherichia coli low-copy-number plasmid R1 centromere parC forms a U-shaped complex with its binding protein ParR. Nucleic Acids Res. 2008, 36, 607–615.
[140]  Pietrasanta, L.I.; Thrower, D.; Hsieh, W.; Rao, S.; Stemmann, O.; Lechner, J.; Carbon, J.; Hansma, H. Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA)-binding factor 3 (CBF3) kinetochore complex by using atomic force microscopy. Proc. Natl. Acad. Sci. USA 1999, 96, 3757–3762.
[141]  Screpanti, E.; de Antoni, A.; Alushin, G.M.; Petrovic, A.; Melis, T.; Nogales, E.; Musacchio, A. Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr. Biol 2011, 21, 391–398.
[142]  Kang, Y.H.; Park, C.H.; Kim, T.S.; Soung, N.K.; Bang, J.K.; Kim, B.Y.; Park, J.E.; Lee, K.S. Mammalian polo-like kinase 1-dependent regulation of the PBIP1-CENP-Q complex at kinetochores. J. Biol. Chem. 2011, 286, 19744–19757.
[143]  Luger, K.; Mader, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997, 389, 251–260.
[144]  Tachiwana, H.; Kagawa, W.; Shiga, T.; Osakabe, A.; Miya, Y.; Saito, K.; Hayashi-Takanaka, Y.; Oda, T.; Sato, M.; Park, S.Y.; et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 2011, 476, 232–235.
[145]  Martin-Lluesma, S.; Stucke, V.M.; Nigg, E.A. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 2002, 297, 2267–2270.
[146]  Lemons, N.W.; Hu, B.; Hlavacek, W.S. Hierarchical graphs for rule-based modeling of biochemical systems. BMC Bioinforma. 2011, 12, doi:10.1186/1471-2105-12-45.
[147]  Feret, J.; Danos, V.; Krivine, J.; Harmer, R.; Fontana, W. Internal coarse-graining of molecular systems. Proc. Natl. Acad. Sci. USA 2009, 106, 6453–6458.
[148]  Danos, V.; Feret, J.; Fontana, W.; Krivine, J. Abstract Interpretation of Cellular Signalling Networks. In Lecture Notes Computer Science; Logozzo, F., Peled, D., Zuck, L.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4905, pp. 83–97.
[149]  Borisov, N.M.; Markevich, N.I.; Hoek, J.B.; Kholodenko, B.N. Trading the micro-world of combinatorial complexity for the macro-world of protein interaction domains. Biosystems 2006, 83, 152–166.
[150]  Conzelmann, H.; Saez-Rodriguez, J.; Sauter, T.; Kholodenko, B.; Gilles, E. A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinforma. 2006, 7, doi:10.1186/1471-2105-7-34.
[151]  Conzelmann, H.; Fey, D.; Gilles, E.D. Exact model reduction of combinatorial reaction networks. BMC Syst. Biol. 2008, 2, doi:10.1186/1752-0509-2-78.
[152]  Koschorreck, M.; Conzelmann, H.; Ebert, S.; Ederer, M.; Gilles, E.D. Reduced modeling of signal transduction—A modular approach. BMC Bioinforma. 2007, 8, doi:10.1186/1471-2105-8-336.
[153]  Kamerlin, S.C.; Vicatos, S.; Dryga, A.; Warshel, A. Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. Annu. Rev. Phys. Chem 2011, 62, 41–64.
[154]  Kreyssig, P.; Dittrich, P. Fragments and chemical organisations. Electr. Notes Theor. Comput. Sci 2011, 272, 19–41.
[155]  Chen, T.; Han, T.; Kwiatkowska, M. On the complexity of model checking interval-valued discrete time markov chains. Inf. Process. Lett 2013, 113, 210–216.
[156]  Kwiatkowska, M.; Parker, D. Advances in Probabilistic Model Checking. In Software Safety and Security-Tools for Analysis and Verification; Nipkow, T., Grumberg, O., Hauptmann, B., Eds.; IOS Press: Marktoberdorf, Germany, 2012; Volume 33, pp. 126–151.
[157]  Heath, J.; Kwiatkowska, M.; Norman, G.; Parker, D.; Tymchyshyn, O. Probabilistic model checking of complex biological pathways. Lect. Notes Comput. Sci 2008, 391, 239–257.
[158]  Forejt, V.; Kwiatkowska, M.; Parker, D. Pareto Curves for Probabilistic Model Checking. Proceeding of the 10th International Symposium on Automated Technology for Verification and Analysis, Thiruvananthapuram, India, 3–6 October 2012; pp. 317–332.
[159]  Giavitto, J.L.; Michel, O.; Cohen, J. Pattern-matching and rewriting rules for group indexed data structures. ACM SIGPLAN Not 2002, 37, 76–87.
[160]  Assayag, G. Computer Assisted Composition Today. Proceedings of the Symposium on Music and Computers, Corfu, Greece, 23–25 October 1998.
[161]  Benko, G.; Flamm, C.; Stadler, P.F. A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci 2003, 43, 1085–1093.
[162]  You, C.H.; Holder, L.B.; Cook, D.J. Graph-Based Data Mining in Dynamic Networks: Empirical Comparison of Compression-Based and Frequency-Based Subgraph Mining. Proceedings of the 2008 IEEE International Conference on Data Mining Workshops, Pisa, Italy, 15–19 December 2008; pp. 929–938.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413