全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cells  2013 

Fluorescein Derivatives in Intravital Fluorescence Imaging

DOI: 10.3390/cells2030591

Keywords: intravital, FLIM, fluorescein

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intravital fluorescence microscopy enables the direct imaging of fluorophores in vivo and advanced techniques such as fluorescence lifetime imaging (FLIM) enable the simultaneous detection of multiple fluorophores. Consequently, it is now possible to record distribution and metabolism of a chemical in vivo and to optimise the delivery of fluorophores in vivo. Recent clinical applications with fluorescein and other intravital fluorescent stains have occurred in neurosurgery, dermatology [including photodynamic therapy (PDT)] and endomicroscopy. Potential uses have been identified in periodontal disease, skin graft and cancer surgery. Animal studies have demonstrated that diseased tissue can be specifically stained with fluorophore conjugates. This review focuses on the fluorescein derived fluorophores in common clinical use and provides examples of novel applications from studies in tissue samples.

References

[1]  Lin, L.L.; Grice, J.E.; Butler, M.K.; Zvyagin, A.V.; Becker, W.; Robertson, T.A.; Soyer, H.P.; Roberts, M.S.; Prow, T.W. Time-correlated single photon counting for simultaneous monitoring of zinc oxide nanoparticles and NAD(P)H in intact and barrier-disrupted volunteer skin. Pharm. Res. 2011, 28, 2920–2930, doi:10.1007/s11095-011-0515-5.
[2]  Schaafsma, B.E.; Mieog, J.S.; Hutteman, M.; van der Vorst, J.R.; Kuppen, P.J.; L?wik, C.W.; Frangioni, J.V.; van de Velde, C.J.; Vahrmeijer, A.L. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J. Surg. Oncol. 2011, 104, 323–332, doi:10.1002/jso.21943.
[3]  van den Berg, N.S.; van Leeuwen, F.W.; van der Poel, H.G. Fluorescence guidance in urologic surgery. Curr. Opin. Urol. 2012, 22, 109–120, doi:10.1097/MOU.0b013e3283501869.
[4]  Meisel, P.; Kocher, T. Photodynamic therapy for periodontal diseases: State of the art. J. Photochem. Photobiol. B 2005, 79, 159–170, doi:10.1016/j.jphotobiol.2004.11.023.
[5]  Roberts, M.S.; Dancik, Y.; Prow, T.W.; Thorling, C.A.; Lin, L.L.; Grice, J.E.; Robertson, T.A.; Konig, K.; Becker, W. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. Eur. J. Pharm. Biopharm. 2011, 77, 469–488, doi:10.1016/j.ejpb.2010.12.023.
[6]  Galletly, N.P.; McGinty, J.; Dunsby, C.; Teixeira, F.; Requejo-Isidro, J.; Munro, I.; Elson, D.S.; Neil, M.A.; Chu, A.C.; French, P.M.; Stamp, G.W. Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin. Brit. J. Dermatol. 2008, 159, 152–161, doi:10.1111/j.1365-2133.2008.08577.x.
[7]  Tanter, M.; Touboul, D.; Gennisson, J.-L.; Bercoff, J.; Fink, M. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans. Med. Imaging 2009, 28, 1881–1893, doi:10.1109/TMI.2009.2021471.
[8]  Wollensak, G.; Iomdina, E. Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Acta Ophthalmol. 2009, 87, 48–51, doi:10.1111/j.1755-3768.2008.01190.x.
[9]  Sondergaard, A.P.; Hjortdal, J.; Breitenbach, T.; Ivarsen, A. Corneal Distribution of Riboflavin Prior to Collagen Cross-Linking. Curr. Eye Res. 2010, 35, 116–121, doi:10.3109/02713680903431847.
[10]  Roberts, M.S.; Roberts, M.J.; Robertson, T.A.; Sanchez, W.; Th?rling, C.; Zou, Y.; Zhao, X.; Becker, W.; Zvyagin, A.V. In vitro and in vivo imaging of xenobiotic transport in human skin and in the rat liver. J. Biophotonics 2008, 1, 478–493, doi:10.1002/jbio.200810058.
[11]  Aihara, H.; Tajiri, H.; Suzuki, T. Application of Autofluorescence Endoscopy for Colorectal Cancer Screening: Rationale and an Update. Gastroent. Res. Pract. 2012, 2012, 5.
[12]  Lam, S.; MacAulay, C.; Hung, J.; LeRiche, J.; Profio, A.E.; Palcic, B. Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device. J. Thorac. Cardiov. Sur. 1993, 105, 1035–1040.
[13]  Harris, F.; Pierpoint, L. Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial Agent. Med. Res. Rev. 2012, 32, 1292–1327, doi:10.1002/med.20251.
[14]  Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.-J.; Oppel, F.; Brune, A.; Lanksch, W.; Woiciechowsky, C.; et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicenter phase III trial. Lancet Oncol. 2006, 7, 392–401, doi:10.1016/S1470-2045(06)70665-9.
[15]  Ris, H.B.; Altermatt, H.J.; Stewart, C.M.; Schaffner, T.; Wang, Q.; Lim, C.K.; Bonnett, R.; Althaus, U. Photodynamic therapy with m-tetrahydroxyphenylchlorin in vivo: Optimization of the therapeutic index. Int. J. Cancer 1993, 55, 245–249.
[16]  Marcu, L.; Hartl, B.A. Fluorescence lifetime spectroscopy and imaging in neurosurgery. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1465–1477, doi:10.1109/JSTQE.2012.2185823.
[17]  Thekkek, N.; Richards-Kortum, R. Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nat. Rev. Cancer 2008, 8, 725–731, doi:10.1038/nrc2462.
[18]  Baeyer, A. Phthalic acid-phenol compounds. Justus Liebigs Ann. Chem., 1876, 183, 1–74.
[19]  Scifinder, version 2007.1; Chemical Abstracts Service: Columbus, OH, USA, 2007; (accessed 10 October 2012). Identifies: (i) 'fluorescein' as [2321–07–5] alternate [518-45-6]: 3',6'-dihydroxy-spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one; Fluorescein (8CI); 3,6-Dihydroxyspiro[xanthene-9,3'-phthalide]; 3',6'-Dihydroxyfluoran; 3',6'-Fluorandiol; 9-(o-Carboxyphenyl)-6-hydroxy-3-isoxanthenone; Benzoic acid, 2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-; C.I. 45350:1; C.I. Solvent Yellow 94; D and C Yellow No. 7; D&C Yellow No. 7; Fluorescein acid; Japan Yellow 201; Japan Yellow No. 201; NSC 667256; Resorcinolphthalein; Solvent Yellow 94; Yellow fluorescein; (ii) 'uranin' as [518-47-8]: 3',6'-dihydroxy-spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, sodium salt (1:2); Fluorescein, disodium salt (8CI); Fluorin (6CI,7CI); Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-dihydroxy-, disodium salt (9CI); 11824 Yellow; 12417 Yellow; 3058 Uranine; 5(6)-Carboxyfluorescein sodium; ABCO Uranine; Abbey Uranine; Acid Yellow 73; Aizen Uranine; Basacid Yellow 226; Basovit Yellow 227; C.I. 45350; C.I. Acid Yellow 73; Calcocid Uranine B 4315; Certiqual Fluoresceine; Cogilor Yellow 111.10; D & C Yellow 8; D and C Yellow No. 8; D&C Yellow No. 8; D&C Yellow No. 8–307225; Dinacid Florescence Uranine; Dinacid Florescinece Uranine; Disodium fluorescein; Fluo-rectal; Fluor-I-Strip; Fluorescein LT; Fluorescein Sodium B.P; Fluorescein disodium; Fluorescein sodium; Fluorescein sodium salt; Fluoresceine DTD 842; Fluoresceine Extra 019187; Fluorescite; Fluoresein; Flurenate; Ful-Glo; Furanium; Hidacid Uranine; Japan Yellow 202(1); Neelicol Fluorescein; Neelicol Uranine; Obiturine; Resorcinol phthalein sodium; Sicomet Uranin S 45350; Sicomet Uranine S 45350; Simacid Fluoresceine LT; Simacid Fluoresceine Sodium; Sodium fluorescein; Sodium fluoresceinate; Soluble Fluorescein; Soluble Fluoresceine BPS; Triacid Fluoresceine; Urane U 307027; Uranin; Uranin A; Uranin Conc; Uranin S; Uranine; Uranine A; Ur
[20]  Babbey, C.M.; Ryan, J.C.; Gill, E.M.; Ghabril, M.S.; Burch, C.R.; Paulman, A.; Dunn, K.W. Quantitative intravital microscopy of hepatic transport. IntraVital 2012, 1, 44–53, doi:10.4161/intv.21296.
[21]  Chen, X.; Pradhan, T.; Wang, F.; Kim, J.S.; Yoon, J. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives. Chem. Rev. 2012, 112, 1910–1956, doi:10.1021/cr200201z.
[22]  Baranyai, E. Chemistry of staining in histology. Chem. Aust. 2012, 26–29.
[23]  Gareau, D.; Bar, A.; Snaveley, N.; Lee, K.; Chen, N.; Swanson, N.; Simpson, E.; Jacques, S. Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions. J. Biomed. Opt. 2012, 17, 066018, doi:10.1117/1.JBO.17.6.066018.
[24]  Adur, J.; Pelegati, V.B.; de, T.A.A.; Baratti, M.O.; Almeida, D.B.; Andrade, L.A.L.A.; Bottcher-Luiz, F.; Carvalho, H.F.; Cesar, C.L. Optical biomarkers of serous and mucinous human ovarian tumor assessed with nonlinear optics microscopies. PLoS One 2012, 7, e47007, doi:10.1371/journal.pone.0047007.
[25]  Wallace, M.B.; Meining, A.; Canto, M.I.; Fockens, P.; Miehlke, S.; Roesch, T.; Lightdale, C.J.; Pohl, H.; Carr-Locke, D.; Lohr, M.; et al. The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract. Aliment. Pharmacol. Ther. 2010, 31, 548–552, doi:10.1111/j.1365-2036.2009.04207.x.
[26]  Slyusareva, E.A.; Tomilin, F.N.; Sizykh, A.G.; Tankevich, E.Y.; Kuzubov, A.A.; Ovchinnikov, S.G. The effect of halogen substitution on the structure and electronic spectra of fluorone dyes. Opt. Spectrosc. 2012, 112, 671–678, doi:10.1134/S0030400X12040194.
[27]  Song, A.; Zhang, J.; Zhang, M.; Shen, T.; Tang, J. Spectral properties and structure of fluorescein and its alkyl derivatives in micelles. Colloids Surf. A 2000, 167, 253–262, doi:10.1016/S0927-7757(99)00313-1.
[28]  Doukas, A.G.; Junnarkar, M.R.; Alfano, R.R.; Callender, R.H.; Kakitani, T.; Honig, B. Fluorescence quantum yield of visual pigments: Evidence for subpicosecond isomerization rates. Proc. Natl. Acad. Sci. USA 1984, 81, 4790–4794, doi:10.1073/pnas.81.15.4790.
[29]  Fleming, G.R.; Knight, A.W.E.; Morris, J.M.; Morrison, R.J.S.; Robinson, G.W. Picosecond fluorescence studies of xanthene dyes. J. Am. Chem. Soc. 1977, 99, 4306–4311, doi:10.1021/ja00455a017.
[30]  Mineno, T.; Ueno, T.; Urano, Y.; Kojima, H.; Nagano, T. Creation of superior carboxyfluorescein dyes by blocking donor-excited photoinduced electron transfer. Org. Lett. 2006, 8, 5963–5966, doi:10.1021/ol0623926.
[31]  Yusop, R.M.; Unciti-Broceta, A.; Bradley, M. A highly sensitive fluorescent viscosity sensor. Bioorg. Med. Chem. Lett. 2012, 22, 5780–5783, doi:10.1016/j.bmcl.2012.07.101.
[32]  Walkup, G.K.; Burdette, S.C.; Lippard, S.J.; Tsien, R.Y. A New Cell-Permeable Fluorescent Probe for Zn2+. J. Am. Chem. Soc. 2000, 122, 5644–5645.
[33]  Burdette, S.C.; Frederickson, C.J.; Bu, W.; Lippard, S.J. ZP4, an improved neuronal Zn2+ sensor of the zinpyr family. J. Am. Chem. Soc. 2003, 125, 1778–1787, doi:10.1021/ja0287377.
[34]  Zhang, Q.; Grice, J.E.; Li, P.; Jepps, O.G.; Wang, G.-J.; Roberts, M.S. Skin Solubility Determines Maximum Transepidermal Flux for Similar Size Molecules. Pharm. Res. 2009, 26, 1974–1985, doi:10.1007/s11095-009-9912-4.
[35]  Thorling, C.A.; Dancik, Y.; Hupple, C.W.; Medley, G.; Liu, X.; Zvyagin, A.V.; Robertson, T.A.; Burczynski, F.J.; Roberts, M.S. Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo. J. Biomed. Opt. 2011, 16, 086013/086011–086013/086017.
[36]  Liu, X.; Thorling, C.A.; Jin, L.; Roberts, M.S. Intravital multiphoton imaging of rhodamine 123 in the rat liver after intravenous dosing. IntraVital 2012, 1, 30–31.
[37]  Lee, P.J.; Langer, R.; Shastri, V.P. Novel microemulsion enhancer formulation for simultaneous transdermal delivery of hydrophilic and hydrophobic drugs. Pharm. Res. 2003, 20, 264–269, doi:10.1023/A:1022283423116.
[38]  Okuda, T.; Yoshioka, H.; Kato, A. Fluorescence-guided surgery for glioblastoma multiforme using high-dose fluorescein sodium with excitation and barrier filters. J. Clin. Neurosci. 2012, 19, 1719–1722, doi:10.1016/j.jocn.2011.12.034.
[39]  van Dam, G.M.; Themelis, G.; Crane, L.M.; Harlaar, N.J.; Pleijhuis, R.G.; Kelder, W.; Sarantopoulos, A.; de Jong, J.S.; Arts, H.J.; van der Zee, A.G.; et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nat. Med. 2011, 17, 1315–1319, doi:10.1038/nm.2472.
[40]  Beija, M.; Afonso, C.A.M.; Martinho, J.M.G. Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem. Soc. Rev. 2009, 38, 2410–2433, doi:10.1039/b901612k.
[41]  Savarese, M.; Aliberti, A.; De, S.I.; Battista, E.; Causa, F.; Netti, P.A.; Rega, N. Fluorescence lifetimes and quantum yields of rhodamine derivatives: New insights from theory and experiment. J. Phys. Chem. A 2012, 116, 7491–7497, doi:10.1021/jp3021485.
[42]  Guldbrand, S.; Simonsson, C.; Goksoer, M.; Smedh, M.; Ericson, M.B. Two-photon fluorescence correlation microscopy combined with measurements of point spread function; investigations made in human skin. Opt. Express 2010, 18, 15289–15302, doi:10.1364/OE.18.015289.
[43]  Maurin, M.; Stephan, O.; Vial, J.-C.; Marder, S.R.; van, d.S.B. Deep in vivo two-photon imaging of blood vessels with a new dye encapsulated in pluronic nanomicelles. J. Biomed. Opt. 2011, 16, 036001, doi:10.1117/1.3548879.
[44]  Lee, M.; Grissom, C.B. Design, Synthesis, and Characterization of Fluorescent Cobalamin Analogues with High Quantum Efficiencies. Org. Lett. 2009, 11, 2499–2502, doi:10.1021/ol900401z.
[45]  Kucki, M.; Fuhrmann-Lieker, T. Staining diatoms with rhodamine dyes: Control of emission colour in photonic biocomposites. J. R. Soc. Interface 2012, 9, 727–733, doi:10.1098/rsif.2011.0424.
[46]  Taruttis, A.; Ntziachristos, V. Translational optical imaging. AJR Am. J. Roentgenol. 2012, 199, 263–271, doi:10.2214/AJR.11.8431.
[47]  Goetz, M.; Wang, T.D. Molecular imaging in gastrointestinal endoscopy. Gastroenterology 2010, 138, 828–833, doi:10.1053/j.gastro.2010.01.009.
[48]  Sanai, N.; Eschbacher, J.; Hattendorf, G.; Coons, S.W.; Preul, M.C.; Smith, K.A.; Nakaji, P.; Spetzler, R.F. Intraoperative confocal microscopy for brain tumors: A feasibility analysis in humans. Neurosurgery 2011, 68, 282–290; discussion 290.
[49]  Astner, S.; Dietterle, S.; Otberg, N.; Rowert-Huber, H.-J.; Stockfleth, E.; Lademann, J. Clinical applicability of in vivo fluorescence confocal microscopy for noninvasive diagnosis and therapeutic monitoring of nonmelanoma skin cancer. J. Biomed. Opt. 2008, 13, 014003, doi:10.1117/1.2837411.
[50]  Saldua, M.A.; Olsovsky, C.A.; Callaway, E.S.; Chapkin, R.S.; Maitland, K.C. Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope. J. Biomed. Opt. 2012, 17, 016006, doi:10.1117/1.JBO.17.1.016006.
[51]  Jonak, C.; Skvara, H.; Kunstfeld, R.; Trautinger, F.; Schmid, J.A. Intradermal Indocyanine green for in vivo fluorescence laser scanning microscopy of human skin: A pilot study. PLoS One 2011, 6, e23972.
[52]  Dinish, U.S.; Fu, C.Y.; Ng, B.K.; Chow, T.H.; Murukeshan, V.M.; Seah, L.K.; Tan, S.K. A fluorescence lifetime imaging microscopy (FLIM) system for the characterization of haematoxylin and eosin stained sample. Proc. SPIE 2008, 6859, 68590C/68591–68590C/68599.
[53]  Conklin, M.W.; Provenzano, P.P.; Eliceiri, K.W.; Sullivan, R.; Keely, P.J. Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Cell Biochem. Biophys. 2009, 53, 145–157, doi:10.1007/s12013-009-9046-7.
[54]  Seo, H.W.; Kim, G.H.; Kim, D.Y.; Yoon, S.M.; Kwon, J.S.; Kang, W.S.; Lee, B.; Kim, J.H.; Min, B.H.; Kim, M.S. Microemulsion of erythromycine for transdermal drug delivery. J. Appl. Polym. Sci. 2013, 128, 4277–4282, doi:10.1002/app.38648.
[55]  Auner, B.G.; Valenta, C.; Hadgraft, J. Influence of phloretin and 6-ketocholestanol on the skin permeation of sodium-fluorescein. J. Control. Release 2003, 89, 321–328, doi:10.1016/S0168-3659(03)00124-X.
[56]  Zambito, Y.; Uccello-Barretta, G.; Zaino, C.; Balzano, F.; Di, C.G. Novel transmucosal absorption enhancers obtained by aminoalkylation of chitosan. Eur. J. Pharm. Sci. 2006, 29, 460–469.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413