全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cells  2013 

Morphological Features of Organelles during Apoptosis: An Overview

DOI: 10.3390/cells2020294

Keywords: apoptosis, cytoskeleton, endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria

Full-Text   Cite this paper   Add to My Lib

Abstract:

An apoptotic program leading to controlled cell dismantling implies perturbations of nuclear dynamics, as well as changes affecting the organelle structure and distribution. In human cancer cells driven to apoptosis by different stimuli, we have recently investigated the morphological properties of several organelles, including mitochondria, lysosomes, endoplasmic reticulum and Golgi apparatus. In this review, we will discuss the body of evidence in the literature suggesting that organelles are generally relocated and/or degraded during apoptosis, irrespectively of the apoptogenic stimulus and cell type.

References

[1]  Joza, N.; Susin, S.A.; Daugas, E.; Stanford, W.L.; Cho, S.K.; Li, C.Y.; Sasaki, T.; Elia, A.J.; Cheng, H.Y.; Ravagnan, L.; et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 2001, 410, 549–554, doi:10.1038/35069004.
[2]  Le Bras, M.; Rouy, I.; Brenner, C. The modulation of inter-organelle cross-talk to control apoptosis. Med. Chem. 2006, 2, 1–12, doi:10.2174/157340606775197787.
[3]  Soldani, C.; Bottone, M.G.; Fraschini, A.; Croce, A.C.; Bottiroli, G.; Scovassi, A.I.; Pellicciari, C. Apoptosis as a Consequence of Multiple Organelle Damage in Cultured Tumor Cells after Photosensitization with Rose Bengal Acetate. In Cell Apoptosis and Cancer; Taylor, A.W., Ed.; NOVA Science: Hauppauge, NY, USA, 2007; pp. 23–45.
[4]  Bottone, M.G.; Giansanti, V.; Veneroni, P.; Bernocchi, G.; Scovassi, A.I.; Pellicciari, C. The Apoptosis-Inducing Factor (AIF) Moves from Mitochondria to the Nucleus and Back to the Cytoplasm, during Apoptosis. In Mitochondria: Structure, Functions and Dysfunctions; Svensson, O.L., Ed.; NOVA Science: Hauppauge, NY, USA, 2010; pp. 123–140.
[5]  Santin, G.; Scietti, L.; Veneroni, P.; Barni, S.; Bernocchi, G.; Bottone, M.G. Effects of Cisplatin in neuroblastoma rat cells: damage to cellular organelles. Int. J. Cell Biol. 2012, 2012, 1–6.
[6]  Nú?ez, R.; Sancho-Martínez, S.M.; Novoa, J.M.; López-Hernández, F.J. Apoptotic volume decrease as a geometric determinant for cell dismantling into apoptotic bodies. Cell Death Differ. 2010, 17, 1665–1671, doi:10.1038/cdd.2010.96.
[7]  Soldani, C.; Croce, A.C.; Bottone, M.G.; Fraschini, A.; Biggiogera, M.; Bottiroli, G.; Pellicciari, C. Apoptosis in tumour cells photosensitized with Rose Bengal acetate is induced by multiple organelle photodamage. Histochem. Cell Biol. 2007, 128, 485–495, doi:10.1007/s00418-007-0333-3.
[8]  Grimm, S. The ER-mitochondria interface: the social network of cell death. Biochim. Biophys. Acta 2012, 1823, 327–334, doi:10.1016/j.bbamcr.2011.11.018.
[9]  Fraschini, A.; Bottone, M.G.; Scovassi, A.I.; Denegri, M.; Risue?o, M.C.; Testillano, P.S.; Martin, T.E.; Biggiogera, M.; Pellicciari, C. Changes in extranucleolar transcription during actinomycin D-induced apoptosis. Histol. Histopathol. 2005, 20, 107–117.
[10]  Jiang, Z.; Hu, Z.; Zeng, L.; Lu, W.; Zhang, H.; Li, T.; Xiao, H. The role of the Golgi apparatus in oxidative stress: Is this organelle less significant than mitochondria? Free Radic. Biol. Med. 2011, 50, 907–917, doi:10.1016/j.freeradbiomed.2011.01.011.
[11]  Soldani, C.; Bottone, M.G.; Croce, A.C.; Fraschini, A.; Bottiroli, G.; Pellicciari, C. The Golgi apparatus is a primary site of intracellular damage after photosensitization with Rose Bengal acetate. Eur. J. Histochem. 2004, 48, 443–448.
[12]  Bottone, M.G.; Santin, G.; Soldani, C.; Veneroni, P.; Scovassi, A.I.; Alpini, C. Intracellular distribution of Tankyrases as detected by multicolor immunofluorescence techniques. Eur. J. Histochem. 2012, 56, e4.
[13]  Kurz, T.; Terman, A.; Gustafsson, B.; Brunk, U.T. Lysosomes in iron metabolism, ageing and apoptosis. Histochem. Cell Biol. 2008, 129, 389–406, doi:10.1007/s00418-008-0394-y.
[14]  Kirkegaard, T.; J??ttel?, M. Lysosomal involvement in cell death and cancer. Biochim. Biophys. Acta 2009, 1793, 746–754, doi:10.1016/j.bbamcr.2008.09.008.
[15]  ?esen, M.H.; Pegan, K.; Spes, A.; Turk, B. Lysosomal pathways to cell death and their therapeutic applications. Exp. Cell Res. 2012, 318, 1245–1251, doi:10.1016/j.yexcr.2012.03.005.
[16]  Repnik, U.; Stoka, V.; Turk, V.; Turk, B. Lysosomes and lysosomal cathepsins in cell death. Biochim. Biophys. Acta 2012, 1824, 22–33, doi:10.1016/j.bbapap.2011.08.016.
[17]  Johansson, A.C.; Appelqvist, H.; Nilsson, C.; K?gedal, K.; Roberg, K.; Ollinger, K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 2010, 15, 527–540, doi:10.1007/s10495-009-0452-5.
[18]  Repnik, U.; Turk, B. Lysosomal-mitochondrial cross-talk during cell death. Mitochondrion 2010, 10, 662–669, doi:10.1016/j.mito.2010.07.008.
[19]  Schrader, K.; Huai, J.; J?ckel, L.; Oberle, C.; Borner, C. Non-caspase proteases: Triggers or amplifiers of apoptosis? Cell Mol. Life Sci 2010, 67, 1607–1618, doi:10.1007/s00018-010-0287-9.
[20]  Alpini, C.; Lotzniker, M.; Valaperta, S.; Bottone, M.G.; Malatesta, M.; Montanelli, A.; Merlini, G. Characterization for anti-cytoplasmic antibodies specificity by morphological and molecular techniques. Autoimmun. Highlights 2012, 3, 79–85, doi:10.1007/s13317-012-0033-4.
[21]  Kroemer, G.; Petit, P.; Zamzami, N.; Vayssiere, J.L.; Mignotte, B. The biochemistry of programmed cell death. FASEB J. 1995, 9, 1277–1287.
[22]  Green, D.R.; Kroemer, G. The pathophysiology of mitochondrial cell death. Science 2004, 305, 626–629, doi:10.1126/science.1099320.
[23]  Giansanti, V.; Camboni, T.; Piscitelli, F.; Prosperi, E.; La Regina, G.; Lazzè, M.C.; Santin, G.; Silvestri, R.; Scovassi, A.I. Study of the effects of a new pyrazolecarboxamide: Changes in mitochondria and induction of apoptosis. Int. J. Biochem. Cell Biol. 2009, 41, 1890–1898, doi:10.1016/j.biocel.2009.04.008.
[24]  Giansanti, V.; Villalpando Rodriguez, G.E.; Savoldelli, M.; Gioia, R.; Forlino, A.; Mazzini, G.; Pennati, M.; Zaffaroni, N.; Scovassi, A.I.; Torriglia, A. Characterization of stress response in human retinal epithelial cells. J. Cell. Mol. Med. 2013, 17, 103–115, doi:10.1111/j.1582-4934.2012.01652.x.
[25]  Kroemer, G.; Reed, J.C. Mitochondrial control of cell death. Nat. Med. 2000, 6, 513–519, doi:10.1038/74994.
[26]  Lorenzo, H.K.; Susin, S.A.; Penninger, J.; Kroemer, G. Apoptosis inducing factor (AIF): A phylogenetically old, caspase-independent effector of cell death. Cell Death Differ. 1999, 6, 516–524.
[27]  Scovassi, A.I.; Soldani, C.; Veneroni, P.; Bottone, M.G.; Pellicciari, C. Changes of mitochondria and relocation of the Apoptosis-Inducing Factor during apoptosis. Ann. N.Y. Acad. Sci. 2009, 1171, 12–17, doi:10.1111/j.1749-6632.2009.04707.x.
[28]  Henson, P.M.; Hume, D.A. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 2006, 27, 244–225, doi:10.1016/j.it.2006.03.005.
[29]  Penaloza, C.; Lin, L.; Lockshin, R.A.; Zakeri, Z. Cell death in development: shaping the embryo. Histochem. Cell Biol. 2006, 126, 149–158, doi:10.1007/s00418-006-0214-1.
[30]  Kerr, J.F.R.; Wyllie, A.H.; Currie, A.R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 1972, 26, 239–257.
[31]  Biggiogera, M.; Bottone, M.G.; Pellicciari, C. Nuclear ribonucleoprotein-containing structures undergo severe rearrangement during spontaneous thymocyte apoptosis. A morphological study by electron microscopy. Histochem. Cell Biol. 1997, 107, 331–336, doi:10.1007/s004180050118.
[32]  Biggiogera, M.; Bottone, M.G.; Scovassi, A.I.; Soldani, C.; Vecchio, L.; Pellicciari, C. Rearrangement of nuclear ribonucleoprotein (RNP)-containing structures during apoptosis and transcriptional arrest. Biol. Cell 2004, 96, 603–615, doi:10.1016/j.biolcel.2004.04.013.
[33]  Biggiogera, M.; Pellicciari, C. Heterogeneous Ectopic RNP-Derived Structures (HERDS) are markers of transcriptional arrest. FASEB J. 2000, 14, 828–834.
[34]  May, R.C.; Machesky, L.M. Phagocytosis and the actin cytoskeleton. J. Cell. Sci. 2001, 114, 1061–1077.
[35]  Moss, D.K.; Lane, J.D. Microtubules: Forgotten players in the apoptotic execution phase. Trends Cell Biol. 2006, 16, 330–338, doi:10.1016/j.tcb.2006.05.005.
[36]  Oropesa, M.; de la Mata, M.; Maraver, J.G.; Cordero, M.D.; Cotán, D.; Rodríguez-Hernández, A.; Domínguez-Mo?ino, I.; de Miguel, M.; Navas, P.; Sánchez-Alcázar, J.A. Apoptotic microtubule network organization and maintenance depend on high cellular ATP levels and energized mitochondria. Apoptosis 2011, 16, 404–424, doi:10.1007/s10495-011-0577-1.
[37]  Franklin-Tong, V.E.; Gourlay, C.W. A role for actin in regulating apoptosis/programmed cell death: evidence spanning yeast, plants and animals. Biochem. J. 2008, 413, 389–404, doi:10.1042/BJ20080320.
[38]  Bottone, M.G.; Soldani, C.; Tognon, G.; Gorrini, C.; Lazzè, M.C.; Brison, O.; Ciomei, M.; Pellicciari, C.; Scovassi, A.I. Multiple effects of paclitaxel are modulated by a high c-myc amplification level. Exp. Cell Res. 2003, 290, 49–59, doi:10.1016/S0014-4827(03)00312-4.
[39]  Bottone, M.G.; Soldani, C.; Veneroni, P.; Avella, D.; Pisu, M.; Bernocchi, G. Cell proliferation, Apoptosis and mitochondrial damage in rat B50 neuronal cells after cisplatin treatment. Cell Prolif. 2008, 41, 506–520, doi:10.1111/j.1365-2184.2008.00530.x.
[40]  Oyadomari, S.; Araki, E.; Mori, M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 2002, 7, 335–345, doi:10.1023/A:1016175429877.
[41]  Rios, R.M.; Bornens, M. The Golgi apparatus at the cell centre. Curr. Opin. Cell Biol. 2003, 15, 60–66, doi:10.1016/S0955-0674(02)00013-3.
[42]  Machamer, C.E. Golgi disassembly in apoptosis: Cause or effect? Trends Cell Biol. 2003, 13, 279–281, doi:10.1016/S0962-8924(03)00101-6.
[43]  Lane, J.; Allan, V. Microtubule-based membrane movement. Biochim. Biophys. Acta 1998, 29, 27–55.
[44]  Lane, J.D.; Vergnolle, M.A.; Woodman, P.G.; Allan, V.J. Apoptotic cleavage of cytoplasmic dynein intermediate chain and p150(Glued) stops dynein-dependent membrane motility. J. Cell Biol. 2001, 153, 1415–1426, doi:10.1083/jcb.153.7.1415.
[45]  Suria, H.; Chau, L.A.; Negrou, E.; Kelvin, D.J.; Madrenas, J. Cytoskeletal disruption induces T cell apoptosis by a caspase-3- mediated mechanism. Life Sci. 1999, 65, 2697–2707, doi:10.1016/S0024-3205(99)00538-X.
[46]  Verhagen, A.M.; Ekert, P.G.; Pakusch, M.; Silke, J.; Connolly, L.M.; Reid, G.E.; Moritz, R.L.; Simpson, R.J.; Vaux, D.L. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000, 102, 43–53, doi:10.1016/S0092-8674(00)00009-X.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413