全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cells  2013 

Monte Carlo Study Elucidates the Type 1/Type 2 Choice in Apoptotic Death Signaling in Healthy and Cancer Cells

DOI: 10.3390/cells2020361

Keywords: cancer, death receptor, caspase 8, Bcl2, apoptosome, XIAP, single cell analysis, Monte Carlo, computer simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Apoptotic cell death is coordinated through two distinct (type 1 and type 2) intracellular signaling pathways. How the type 1/type 2 choice is made remains a central problem in the biology of apoptosis and has implications for apoptosis related diseases and therapy. We study the problem of type 1/type 2 choice in silico utilizing a kinetic Monte Carlo model of cell death signaling. Our results show that the type 1/type 2 choice is linked to deterministic versus stochastic cell death activation, elucidating a unique regulatory control of the apoptotic pathways. Consistent with previous findings, our results indicate that caspase 8 activation level is a key regulator of the choice between deterministic type 1 and stochastic type 2 pathways, irrespective of cell types. Expression levels of signaling molecules downstream also regulate the type 1/type 2 choice. A simplified model of DISC clustering elucidates the mechanism of increased active caspase 8 generation and type 1 activation in cancer cells having increased sensitivity to death receptor activation. We demonstrate that rapid deterministic activation of the type 1 pathway can selectively target such cancer cells, especially if XIAP is also inhibited; while inherent cell-to-cell variability would allow normal cells stay protected.

References

[1]  Scaffidi, C.; Fulda, S.; Srinivasan, A.; Friesen, C.; Li, F.; Tomaselli, K.J.; Debatin, K.M.; Krammer, P.H.; Peter, M.E. Two cd95 (apo-1/fas) signaling pathways. EMBO J. 1998, 17, 1675–1687, doi:10.1093/emboj/17.6.1675.
[2]  Scaffidi, C.; Schmitz, I.; Zha, J.; Korsmeyer, S.J.; Krammer, P.H.; Peter, M.E. Differential modulation of apoptosis sensitivity in cd95 type i and type ii cells. J. Biol. Chem. 1999, 274, 22532–22538.
[3]  Sun, X.M.; Bratton, S.B.; Butterworth, M.; MacFarlane, M.; Cohen, G.M. Bcl-2 and bcl-xl inhibit cd95-mediated apoptosis by preventing mitochondrial release of smac/diablo and subsequent inactivation of x-linked inhibitor-of-apoptosis protein. J. Biol. Chem. 2002, 277, 11345–11351.
[4]  Jost, P.J.; Grabow, S.; Gray, D.; McKenzie, M.D.; Nachbur, U.; Huang, D.C.; Bouillet, P.; Thomas, H.E.; Borner, C.; Silke, J.; et al. Xiap discriminates between type i and type ii fas-induced apoptosis. Nature 2009, 460, 1035–1039, doi:10.1038/nature08229.
[5]  Meng, X.W.; Peterson, K.L.; Dai, H.; Schneider, P.; Lee, S.H.; Zhang, J.S.; Koenig, A.; Bronk, S.; Billadeau, D.D.; Gores, G.J.; et al. High cell surface death receptor expression determines type i versus type ii signaling. J. Biol. Chem. 2011, 286, 35823–35833, doi:10.1074/jbc.M111.240432.
[6]  Hua, F.; Cornejo, M.G.; Cardone, M.H.; Stokes, C.L.; Lauffenburger, D.A. Effects of bcl-2 levels on fas signaling-induced caspase-3 activation: Molecular genetic tests of computational model predictions. J. Immunol. 2005, 175, 985–995.
[7]  Raychaudhuri, S.; Willgohs, E.; Nguyen, T.N.; Khan, E.M.; Goldkorn, T. Monte carlo simulation of cell death signaling predicts large cell-to-cell stochastic fluctuations through the type 2 pathway of apoptosis. Biophys. J. 2008, 95, 3559–3562, doi:10.1529/biophysj.108.135483.
[8]  Raychaudhuri, S. A minimal model of signaling network elucidates cell-to-cell stochastic variability in apoptosis. PLoS One 2010, 5, e11930, doi:10.1371/journal.pone.0011930.
[9]  Raychaudhuri, S.; Skommer, J.; Henty, K.; Birch, N.; Brittain, T. Neuroglobin protects nerve cells from apoptosis by inhibiting the intrinsic pathway of cell death. Apoptosis 2010, 15, 401–411, doi:10.1007/s10495-009-0436-5.
[10]  Skommer, J.; Brittain, T.; Raychaudhuri, S. Bcl-2 inhibits apoptosis by increasing the time-to-death and intrinsic cell-to-cell variations in the mitochondrial pathway of cell death. Apoptosis 2010, 15, 1223–1233, doi:10.1007/s10495-010-0515-7.
[11]  Albeck, J.G.; Burke, J.M.; Spencer, S.L.; Lauffenburger, D.A.; Sorger, P.K. Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol. 2008, 6, 2831–2852.
[12]  Raychaudhuri, S.; Das, S.C. Low probability activation of bax/bak can induce selective killing of cancer cells by generating heterogeneoity in apoptosis. J. Healthc. Eng. 2013, 4, 47–66, doi:10.1260/2040-2295.4.1.47.
[13]  Skommer, J.; Das, S.C.; Nair, A.; Brittain, T.; Raychaudhuri, S. Nonlinear regulation of commitment to apoptosis by simultaneous inhibition of bcl-2 and xiap in leukemia and lymphoma cells. Apoptosis 2011, 16, 619–626, doi:10.1007/s10495-011-0593-1.
[14]  Skommer, J.; Raychaudhuri, S.; Wlodkowic, D. Timing is everything: Stochastic origins of cell-to-cell variability in cancer cell death. Front. Biosci. 2011, 16, 307–314, doi:10.2741/3689.
[15]  Erwig, L.P.; Henson, P.M. Clearance of apoptotic cells by phagocytes. Cell Death Differ. 2008, 15, 243–250, doi:10.1038/sj.cdd.4402184.
[16]  Raychaudhuri, S. How can we kill cancer cells: Insights from the computational models of apoptosis. World J. Clin. Oncol. 2010, 1, 24–28, doi:10.5306/wjco.v1.i1.24.
[17]  Certo, M.; Del Gaizo Moore, V.; Nishino, M.; Wei, G.; Korsmeyer, S.; Armstrong, S.A.; Letai, A. Mitochondria primed by death signals determine cellular addiction to antiapoptotic bcl-2 family members. Cancer Cell 2006, 9, 351–365, doi:10.1016/j.ccr.2006.03.027.
[18]  Kurita, S.; Mott, J.L.; Cazanave, S.C.; Fingas, C.D.; Guicciardi, M.E.; Bronk, S.F.; Roberts, L.R.; Fernandez-Zapico, M.E.; Gores, G.J. Hedgehog inhibition promotes a switch from type ii to type i cell death receptor signaling in cancer cells. PLoS One 2011, 6, e18330, doi:10.1371/journal.pone.0018330.
[19]  Shirley, S.; Morizot, A.; Micheau, O. Regulating trail receptor-induced cell death at the membrane: A deadly discussion. Recent Pat. Anticancer Drug Discov. 2011, 6, 311–323, doi:10.2174/157489211796957757.
[20]  Del Gaizo Moore, V.; Letai, A. Bh3 profiling—Measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Lett. 2012, 332, 202–205, doi:10.1016/j.canlet.2011.12.021.
[21]  Fussenegger, M.; Bailey, J.E.; Varner, J. A mathematical model of caspase function in apoptosis. Nat. Biotechnol. 2000, 18, 768–774, doi:10.1038/77589.
[22]  Bentele, M.; Lavrik, I.; Ulrich, M.; Stosser, S.; Heermann, D.W.; Kalthoff, H.; Krammer, P.H.; Eils, R. Mathematical modeling reveals threshold mechanism in cd95-induced apoptosis. J. Cell Biol. 2004, 166, 839–851, doi:10.1083/jcb.200404158.
[23]  Eissing, T.; Conzelmann, H.; Gilles, E.D.; Allgower, F.; Bullinger, E.; Scheurich, P. Bistability analyses of a caspase activation model for receptor-induced apoptosis. J. Biol. Chem. 2004, 279, 36892–36897.
[24]  Stucki, J.W.; Simon, H.U. Mathematical modeling of the regulation of caspase-3 activation and degradation. J. Theor. Biol. 2005, 234, 123–131, doi:10.1016/j.jtbi.2004.11.011.
[25]  Bagci, E.Z.; Vodovotz, Y.; Billiar, T.R.; Ermentrout, G.B.; Bahar, I. Bistability in apoptosis: Roles of bax, bcl-2, and mitochondrial permeability transition pores. Biophys. J. 2006, 90, 1546–1559, doi:10.1529/biophysj.105.068122.
[26]  Legewie, S.; Bluthgen, N.; Herzel, H. Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput. Biol. 2006, 2, e120, doi:10.1371/journal.pcbi.0020120.
[27]  Rehm, M.; Huber, H.J.; Dussmann, H.; Prehn, J.H. Systems analysis of effector caspase activation and its control by x-linked inhibitor of apoptosis protein. EMBO J. 2006, 25, 4338–4349, doi:10.1038/sj.emboj.7601295.
[28]  Chen, C.; Cui, J.; Lu, H.; Wang, R.; Zhang, S.; Shen, P. Modeling of the role of a bax-activation switch in the mitochondrial apoptosis decision. Biophys. J. 2007, 92, 4304–4315, doi:10.1529/biophysj.106.099606.
[29]  Ryu, S.; Lin, S.C.; Ugel, N.; Antoniotti, M.; Mishra, B. Mathematical modeling of the formation of apoptosome in intrinsic pathway of apoptosis. Syst. Synth. Biol. 2008, 2, 49–66, doi:10.1007/s11693-009-9022-y.
[30]  Rehm, M.; Huber, H.J.; Hellwig, C.T.; Anguissola, S.; Dussmann, H.; Prehn, J.H. Dynamics of outer mitochondrial membrane permeabilization during apoptosis. Cell Death Differ. 2009, 16, 613–623, doi:10.1038/cdd.2008.187.
[31]  Spencer, S.L.; Gaudet, S.; Albeck, J.G.; Burke, J.M.; Sorger, P.K. Non-genetic origins of cell-to-cell variability in trail-induced apoptosis. Nature 2009, 459, 428–432, doi:10.1038/nature08012.
[32]  Fricker, N.; Beaudouin, J.; Richter, P.; Eils, R.; Krammer, P.H.; Lavrik, I.N. Model-based dissection of cd95 signaling dynamics reveals both a pro- and antiapoptotic role of c-flipl. J. Cell Biol. 2010, 190, 377–389, doi:10.1083/jcb.201002060.
[33]  Aldridge, B.B.; Gaudet, S.; Lauffenburger, D.A.; Sorger, P.K. Lyapunov exponents and phase diagrams reveal multi-factorial control over trail-induced apoptosis. Mol. Syst. Biol. 2011, 7, 553.
[34]  Gu, C.; Zhang, J.; Chen, Y.; Lei, J. A trigger model of apoptosis induced by tumor necrosis factor signaling. BMC Syst. Biol. 2011, 5, S13.
[35]  Hong, J.Y.; Kim, G.H.; Kim, J.W.; Kwon, S.S.; Sato, E.F.; Cho, K.H.; Shim, E.B. Computational modeling of apoptotic signaling pathways induced by cisplatin. BMC Syst. Biol. 2012, 6, 122, doi:10.1186/1752-0509-6-122.
[36]  Peter, M.E.; Krammer, P.H. The cd95(apo-1/fas) disc and beyond. Cell Death Differ. 2003, 10, 26–35, doi:10.1038/sj.cdd.4401186.
[37]  Reddy, A.S.; Chilukuri, S.; Raychaudhuri, S. The network of receptors characterize b cell receptor micro- and macroclustering in a monte carlo model. J. Phys. Chem. B 2010, 114, 487–494, doi:10.1021/jp9079074.
[38]  Raychaudhuri, S. Kinetic Monte Carlo simulation in biophysics and systems biology. In Theory and Applications of Monte Carlo Simulations; Chan, W.K.V., Ed.; InTech: Rijeka, Croatia, 2013.
[39]  Goldstein, J.C.; Waterhouse, N.J.; Juin, P.; Evan, G.I.; Green, D.R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat. Cell Biol. 2000, 2, 156–162, doi:10.1038/35004029.
[40]  Dussmann, H.; Rehm, M.; Concannon, C.G.; Anguissola, S.; Wurstle, M.; Kacmar, S.; Voller, P.; Huber, H.J.; Prehn, J.H. Single-cell quantification of bax activation and mathematical modelling suggest pore formation on minimal mitochondrial bax accumulation. Cell Death Differ. 2010, 17, 278–290, doi:10.1038/cdd.2009.123.
[41]  Lee, J.K.; Lu, S.; Madhukar, A. Real-time dynamics of Ca2+, caspase-3/7, and morphological changes in retinal ganglion cell apoptosis under elevated pressure. PLoS One 2010, 5, e13437.
[42]  Newman, M.E.J.; Barkema, G.T. Monte Carlo Methods in Statistical Physics; Oxford University Press: New York, NY, USA, 1999.
[43]  Lopez-Araiza, H.; Ventura, J.L.; Lopez-Diazguerrero, N.E.; Gonzalez-Marquez, H.; Gutierrez-Ruiz, M.C.; Zentella, A.; Konigsberg, M. Organ- and tissue-specific alterations in the anti-apoptotic protein bcl-2 in cd1 female mice of different ages. Biogerontology 2006, 7, 63–67, doi:10.1007/s10522-005-6038-x.
[44]  Maas, C.; Verbrugge, I.; de Vries, E.; Savich, G.; van de Kooij, L.W.; Tait, S.W.; Borst, J. Smac/diablo release from mitochondria and xiap inhibition are essential to limit clonogenicity of type i tumor cells after trail receptor stimulation. Cell Death Differ. 2010, 17, 1613–1623, doi:10.1038/cdd.2010.39.
[45]  Yakovlev, A.G.; Ota, K.; Wang, G.; Movsesyan, V.; Bao, W.L.; Yoshihara, K.; Faden, A.I. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J. Neurosci. 2001, 21, 7439–7446.
[46]  Johnson, C.E.; Huang, Y.Y.; Parrish, A.B.; Smith, M.I.; Vaughn, A.E.; Zhang, Q.; Wright, K.M.; van Dyke, T.; Wechsler-Reya, R.J.; Kornbluth, S.; et al. Differential apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues. Proc. Natl. Acad. Sci. USA 2007, 104, 20820–20825, doi:10.1073/pnas.0709101105.
[47]  Matsuyama, S.; Reed, J.C. Mitochondria-dependent apoptosis and cellular ph regulation. Cell Death Differ. 2000, 7, 1155–1165, doi:10.1038/sj.cdd.4400779.
[48]  Kang, Z.; Sun, S.Y.; Cao, L. Activating death receptor dr5 as a therapeutic strategy for rhabdomyosarcoma. ISRN Oncol. 2012, 2012, 395952.
[49]  Weller, M.; Kleihues, P.; Dichgans, J.; Ohgaki, H. Cd95 ligand: Lethal weapon against malignant glioma? Brain Pathol. 1998, 8, 285–293.
[50]  Pan, G.; Ni, J.; Wei, Y.F.; Yu, G.; Gentz, R.; Dixit, V.M. An antagonist decoy receptor and a death domain-containing receptor for trail. Science 1997, 277, 815–818, doi:10.1126/science.277.5327.815.
[51]  Sheridan, J.P.; Marsters, S.A.; Pitti, R.M.; Gurney, A.; Skubatch, M.; Baldwin, D.; Ramakrishnan, L.; Gray, C.L.; Baker, K.; Wood, W.I.; et al. Control of trail-induced apoptosis by a family of signaling and decoy receptors. Science 1997, 277, 818–821, doi:10.1126/science.277.5327.818.
[52]  Ho, I.A.; Ng, W.H.; Lam, P.Y. Fasl and fadd delivery by a glioma-specific and cell cycle-dependent hsv-1 amplicon virus enhanced apoptosis in primary human brain tumors. Mol. Cancer 2010, 9, 270, doi:10.1186/1476-4598-9-270.
[53]  Scott, F.L.; Stec, B.; Pop, C.; Dobaczewska, M.K.; Lee, J.J.; Monosov, E.; Robinson, H.; Salvesen, G.S.; Schwarzenbacher, R.; Riedl, S.J. The fas-fadd death domain complex structure unravels signalling by receptor clustering. Nature 2009, 457, 1019–1022, doi:10.1038/nature07606.
[54]  Song, J.H.; Tse, M.C.; Bellail, A.; Phuphanich, S.; Khuri, F.; Kneteman, N.M.; Hao, C. Lipid rafts and nonrafts mediate tumor necrosis factor related apoptosis-inducing ligand induced apoptotic and nonapoptotic signals in non small cell lung carcinoma cells. Cancer Res. 2007, 67, 6946–6955, doi:10.1158/0008-5472.CAN-06-3896.
[55]  Legembre, P.; Daburon, S.; Moreau, P.; Ichas, F.; de Giorgi, F.; Moreau, J.F.; Taupin, J.L. Amplification of fas-mediated apoptosis in type ii cells via microdomain recruitment. Mol. Cell. Biol. 2005, 25, 6811–6820, doi:10.1128/MCB.25.15.6811-6820.2005.
[56]  Picone, P.; Carrotta, R.; Montana, G.; Nobile, M.R.; San Biagio, P.L.; di Carlo, M. Abeta oligomers and fibrillar aggregates induce different apoptotic pathways in lan5 neuroblastoma cell cultures. Biophys. J. 2009, 96, 4200–4211.
[57]  Degterev, A.; Yuan, J. Expansion and evolution of cell death programmes. Nat. Rev. Mol. Cell Biol. 2008, 9, 378–390, doi:10.1038/nrm2393.
[58]  Walsh, C.M.; Edinger, A.L. The complex interplay between autophagy, Apoptosis, And necrotic signals promotes t-cell homeostasis. Immunol. Rev. 2010, 236, 95–109, doi:10.1111/j.1600-065X.2010.00919.x.
[59]  Mollinedo, F.; Gajate, C. Fas/cd95 death receptor and lipid rafts: New targets for apoptosis-directed cancer therapy. Drug Resist. Updates 2006, 9, 51–73, doi:10.1016/j.drup.2006.04.002.
[60]  Gulbins, E.; Kolesnick, R. Raft ceramide in molecular medicine. Oncogene 2003, 22, 7070–7077, doi:10.1038/sj.onc.1207146.
[61]  Quintana, E.; Shackleton, M.; Sabel, M.S.; Fullen, D.R.; Johnson, T.M.; Morrison, S.J. Efficient tumour formation by single human melanoma cells. Nature 2008, 456, 593–598, doi:10.1038/nature07567.
[62]  Takeda, K.; Hayakawa, Y.; Smyth, M.J.; Kayagaki, N.; Yamaguchi, N.; Kakuta, S.; Iwakura, Y.; Yagita, H.; Okumura, K. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat. Med. 2001, 7, 94–100, doi:10.1038/83416.
[63]  Safa, A.R.; Pollok, K.E. Targeting the anti-apoptotic protein c-flip for cancer therapy. Cancers 2011, 3, 1639–1671, doi:10.3390/cancers3021639.
[64]  Picarda, G.; Trichet, V.; Teletchea, S.; Heymann, D.; Redini, F. Trail receptor signaling and therapeutic option in bone tumors: The trap of the bone microenvironment. Am. J. Cancer Res. 2012, 2, 45–64.
[65]  Accordi, B.; Pillozzi, S.; Dell’Orto, M.C.; Cazzaniga, G.; Arcangeli, A.; Kronnie, G.T.; Basso, G. Hepatocyte growth factor receptor c-met is associated with fas and when activated enhances drug-induced apoptosis in pediatric b acute lymphoblastic leukemia with tel-aml1 translocation. J. Biol. Chem. 2007, 282, 29384–29393.
[66]  Zhao, Y.; Difrancesca, D.; Wang, X.; Zarnegar, R.; Michalopoulos, G.K.; Yin, X.M. Promotion of fas-mediated apoptosis in type ii cells by high doses of hepatocyte growth factor bypasses the mitochondrial requirement. J. Cell. Physiol. 2007, 213, 556–563, doi:10.1002/jcp.21136.
[67]  Letai, A.; Bassik, M.C.; Walensky, L.D.; Sorcinelli, M.D.; Weiler, S.; Korsmeyer, S.J. Distinct bh3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002, 2, 183–192, doi:10.1016/S1535-6108(02)00127-7.
[68]  Huang, Y.; Rich, R.L.; Myszka, D.G.; Wu, H. Requirement of both the second and third bir domains for the relief of x-linked inhibitor of apoptosis protein (xiap)-mediated caspase inhibition by smac. J. Biol. Chem. 2003, 278, 49517–49522, doi:10.1074/jbc.M310061200.
[69]  Asthagiri, A.R.; Lauffenburger, D.A. A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (mapk) pathway model. Biotechnol. Progress 2001, 17, 227–239, doi:10.1021/bp010009k.
[70]  Renatus, M.; Stennicke, H.R.; Scott, F.L.; Liddington, R.C.; Salvesen, G.S. Dimer formation drives the activation of the cell death protease caspase 9. Proc. Natl. Acad. Sci. USA 2001, 98, 14250–14255.
[71]  Riedl, S.J.; Renatus, M.; Schwarzenbacher, R.; Zhou, Q.; Sun, C.; Fesik, S.W.; Liddington, R.C.; Salvesen, G.S. Structural basis for the inhibition of caspase-3 by xiap. Cell 2001, 104, 791–800, doi:10.1016/S0092-8674(01)00274-4.
[72]  Stennicke, H.R.; Jurgensmeier, J.M.; Shin, H.; Deveraux, Q.; Wolf, B.B.; Yang, X.; Zhou, Q.; Ellerby, H.M.; Ellerby, L.M.; Bredesen, D.; et al. Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 1998, 273, 27084–27090, doi:10.1074/jbc.273.42.27084.
[73]  Stennicke, H.R.; Deveraux, Q.L.; Humke, E.W.; Reed, J.C.; Dixit, V.M.; Salvesen, G.S. Caspase-9 can be activated without proteolytic processing. J. Biol. Chem. 1999, 274, 8359–8362.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413