全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cells  2013 

Systems Biology: The Role of Engineering in the Reverse Engineering of Biological Signaling

DOI: 10.3390/cells2020393

Keywords: control engineering, information theory, signal processing, statistical inference, homeostasis

Full-Text   Cite this paper   Add to My Lib

Abstract:

One of the principle tasks of systems biology has been the reverse engineering of signaling networks. Because of the striking similarities to engineering systems, a number of analysis and design tools from engineering disciplines have been used in this process. This review looks at several examples including the analysis of homeostasis using control theory, the attenuation of noise using signal processing, statistical inference and the use of information theory to understand both binary decision systems and the response of eukaryotic chemotactic cells.

References

[1]  Hartwell, L.H.; Hopfield, J.J.; Leibler, S.; Murray, A.W. From molecular to modular cell biology. Nature 1999, 402, 47–52, doi:10.1038/46972. 10573417
[2]  Csete, M.E.; Doyle, J.C. Reverse engineering of biological complexity. Science 2002, 295, 1664–1669, doi:10.1126/science.1069981. 11872830
[3]  Bennett, S. A History of Control Engineering, 1800–1930; Peregrinus: Stevenage, UK, 1979.
[4]  Iglesias, P.; Ingalls, B. Control Theory and Systems Biology; MIT Press: Cambridge, MA, USA, 2010.
[5]  Rato, C.; Amirova, S.R.; Bates, D.G.; Stansfield, I.; Wallace, H.M. Translational recoding as a feedback controller: Systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift. Nucleic Acids Res. 2011, 39, 4587–4597, doi:10.1093/nar/gkq1349. 21303766
[6]  Milias-Argeitis, A.; Summers, S.; Stewart-Ornstein, J.; Zuleta, I.; Pincus, D.; El-Samad, H.; Khammash, M.; Lygeros, J. In silico feedback for in vivo regulation of a gene expression circuit. Nat. Biotechnol. 2011, 29, 1114–1116, doi:10.1038/nbt.2018. 22057053
[7]  Cosentino, C.; Salerno, L.; Passanti, A.; Merola, A.; Bates, D.G.; Amato, F. Structural bistability of the GAL regulatory network and characterization of its domains of attraction. J. Comput. Biol. 2012, 19, 148–162, doi:10.1089/cmb.2011.0251. 22300317
[8]  Sheppard, P.W.; Rathinam, M.; Khammash, M. SPSens: A software package for stochastic parameter sensitivity analysis of biochemical reaction networks. Bioinformatics 2013, 29, 140–142, doi:10.1093/bioinformatics/bts642. 23104889
[9]  Neuert, G.; Munsky, B.; Tan, R.Z.; Teytelman, L.; Khammash, M.; van Oudenaarden, A. Systematic identification of signal-activated stochastic gene regulation. Science 2013, 339, 584–587, doi:10.1126/science.1231456. 23372015
[10]  Cooper, S.J. From claude bernard to walter cannon. Emergence of the concept of homeostasis. Appetite 2008, 51, 419–427, doi:10.1016/j.appet.2008.06.005. 18634840
[11]  Cannon, W. The Wisdom of the Body; W.W. Norton: New York, NY, USA, 1932.
[12]  Ma, W.; Trusina, A.; El-Samad, H.; Lim, W.A.; Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 2009, 138, 760–773, doi:10.1016/j.cell.2009.06.013. 19703401
[13]  ?str?m, K.; Murray, R. Feedback Systems: An Introduction for Scientists and Engineers; Princeton University Press: Princeton, NJ, USA, 2008.
[14]  Francis, B.; Wonham, W. Internal model principle of control-theory. Automatica 1975, 12, 457–465.
[15]  Sontag, E. Adaptation and regulation with signal detection implies internal model. Syst. Control Lett. 2003, 50, 119–126, doi:10.1016/S0167-6911(03)00136-1.
[16]  Alon, U.; Surette, M.G.; Barkai, N.; Leibler, S. Robustness in bacterial chemotaxis. Nature 1999, 397, 168–171, doi:10.1038/16483. 9923680
[17]  Barkai, N.; Leibler, S. Robustness in simple biochemical networks. Nature 1997, 387, 913–917, doi:10.1038/43199. 9202124
[18]  Yi, T.M.; Huang, Y.; Simon, M.I.; Doyle, J. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. USA 2000, 97, 4649–4653, doi:10.1073/pnas.97.9.4649. 10781070
[19]  Hohmann, S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 2002, 66, 300–372, doi:10.1128/MMBR.66.2.300-372.2002. 12040128
[20]  Mettetal, J.T.; Muzzey, D.; Gomez-Uribe, C.; van Oudenaarden, A. The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 2008, 319, 482–484, doi:10.1126/science.1151582. 18218902
[21]  Muzzey, D.; Gomez-Uribe, C.A.; Mettetal, J.T.; van Oudenaarden, A. A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 2009, 138, 160–171, doi:10.1016/j.cell.2009.04.047. 19596242
[22]  Mangan, S.; Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. USA 2003, 100, 11980–11985, doi:10.1073/pnas.2133841100. 14530388
[23]  Koshland, D.E. A response regulator model in a simple sensory system. Science 1977, 196, 1055–1063, doi:10.1126/science.870969. 870969
[24]  Levchenko, A.; Iglesias, P.A. Models of eukaryotic gradient sensing: Application to chemotaxis of amoebae and neutrophils. Biophys. J. 2002, 82, 50–63, doi:10.1016/S0006-3495(02)75373-3. 11751295
[25]  Iglesias, P.A.; Devreotes, P.N. Navigating through models of chemotaxis. Curr. Opin. Cell Biol. 2008, 20, 35–40, doi:10.1016/j.ceb.2007.11.011. 18207721
[26]  Takeda, K.; Shao, D.; Adler, M.; Charest, P.G.; Loomis, W.F.; Levine, H.; Groisman, A.; Rappel, W.J.; Firtel, R.A. Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway. Sci. Signal 2012, 5, ra2, doi:10.1126/scisignal.2002413.
[27]  Krishnan, J.; Iglesias, P.A. Analysis of the signal transduction properties of a module of spatial sensing in eukaryotic chemotaxis. Bull. Math. Biol. 2003, 65, 95–128, doi:10.1006/bulm.2002.0323. 12597118
[28]  Shoval, O.; Goentoro, L.; Hart, Y.; Mayo, A.; Sontag, E.; Alon, U. Fold-change detection and scalar symmetry of sensory input fields. Proc. Natl. Acad. Sci. USA 2010, 107, 15995–16000, doi:10.1073/pnas.1002352107. 20729472
[29]  Bode, H. Network Analysis and Feedback Amplifier Design; D. Van Nostrand: New York, NY, USA, 1945.
[30]  Serón, M.; Braslavsky, J.; Goodwin, G. Fundamental Limitations in Filtering and Control; Springer: London, UK, 1997.
[31]  Iglesias, P. Tradeoffs in linear time-varying sysems: An analogue of Bode's sensitivity integral. Automatica 2001, 37, 1541–1550, doi:10.1016/S0005-1098(01)00103-0.
[32]  Zang, G.; Iglesias, P. Nonlinear extension of Bode's integral based on an information-theoretic interpretation. Syst. Contr. Lett. 2003, 50, 11–19, doi:10.1016/S0167-6911(03)00119-1.
[33]  Chandra, F.A.; Buzi, G.; Doyle, J.C. Glycolytic oscillations and limits on robust efficiency. Science 2011, 333, 187–192, doi:10.1126/science.1200705. 21737735
[34]  Rao, C.V.; Wolf, D.M.; Arkin, A.P. Control, exploitation and tolerance of intracellular noise. Nature 2002, 420, 231–237, doi:10.1038/nature01258. 12432408
[35]  Munsky, B.; Neuert, G.; van Oudenaarden, A. Using gene expression noise to understand gene regulation. Science 2012, 336, 183–187. 22499939
[36]  Berg, H.C.; Purcell, E.M. Physics of chemoreception. Biophys. J. 1977, 20, 193–219, doi:10.1016/S0006-3495(77)85544-6. 911982
[37]  Perkins, T.J.; Swain, P.S. Strategies for cellular decision-making. Mol. Syst. Biol. 2009, 5, 326, doi:10.1038/msb.2009.83.
[38]  Libby, E.; Perkins, T.J.; Swain, P.S. Noisy information processing through transcriptional regulation. Proc. Natl. Acad. Sci. USA 2007, 104, 7151–7156, doi:10.1073/pnas.0608963104. 17420464
[39]  Sartori, P.; Tu, Y. Noise filtering strategies in adaptive biochemical signaling networks: Application to E. coli chemotaxis. J. Stat. Phys. 2011, 142, 1206–1217, doi:10.1007/s10955-011-0169-z. 22977289
[40]  Chou, C.S.; Bardwell, L.; Nie, Q.; Yi, T.M. Noise filtering tradeoffs in spatial gradient sensing and cell polarization response. BMC Syst. Biol. 2011, 5, 196, doi:10.1186/1752-0509-5-196.
[41]  Strong, S.; Freedman, B.; Bialek, W.; Koberle, R. Adaptation and optimal chemotactic strategy in E. coli. Phys. Rev. E 1998, 57, 4604–4617.
[42]  Samoilov, M.; Arkin, A.; Ross, J. Signal Processing by Simple Chemical Systems. J. Phys. Chem. A 2002, 106, 10205–10221, doi:10.1021/jp025846z.
[43]  Andrews, B.W.; Yi, T.M.; Iglesias, P.A. Optimal noise filtering in the chemotactic response of Escherichia coli. PLoS Comput. Biol. 2006, 2, e154, doi:10.1371/journal.pcbi.0020154. 17112312
[44]  Lan, G.; Sartori, P.; Neumann, S.; Sourjik, V.; Tu, Y. The energy-speed-accuracy tradeoff in sensory adaptation. Nat. Phys. 2012, 8, 422–428, doi:10.1038/nphys2276. 22737175
[45]  Bialek, W. Physical limits to sensation and perception. Annu. Rev. Biophys. Biophys. Chem. 1987, 16, 455–478, doi:10.1146/annurev.bb.16.060187.002323. 3297091
[46]  Kalman, R. A new approach to linear filtering and prediction problems. Trans. ASME—J. Basic Eng. Series D 1960, 82, 35–45, doi:10.1115/1.3662552.
[47]  Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, doi:10.1002/j.1538-7305.1948.tb00917.x.
[48]  Cover, T.; Thomas, J. Elements of Information Theory, 2nd. ed. ed.; Wiley: Hoboken, NJ, USA, 2006.
[49]  Waltermann, C.; Klipp, E. Information theory based approaches to cellular signaling. Biochim. Biophys. Acta 2011, 1810, 924–932, doi:10.1016/j.bbagen.2011.07.009. 21798319
[50]  Brennan, M.D.; Cheong, R.; Levchenko, A. Systems biology. How information theory handles cell signaling and uncertainty. Science 2012, 338, 334–335, doi:10.1126/science.1227946. 23087235
[51]  Rhee, A.; Cheong, R.; Levchenko, A. The application of information theory to biochemical signaling systems. Phys. Biol. 2012, 9, 045011, doi:10.1088/1478-3975/9/4/045011.
[52]  Tka?ik, G.; Callan, C.G.; Bialek, W. Information flow and optimization in transcriptional regulation. Proc. Natl. Acad. Sci. USA 2008, 105, 12265–12270, doi:10.1073/pnas.0806077105. 18719112
[53]  Hormoz, S. Cross talk and interference enhance information capacity of a signaling pathway. Biophys. J. 2013, 104, 1170–1180, doi:10.1016/j.bpj.2013.01.033. 23473500
[54]  Janetopoulos, C.; Ma, L.; Devreotes, P.N.; Iglesias, P.A. Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc. Natl. Acad. Sci. USA 2004, 101, 8951–8956, doi:10.1073/pnas.0402152101. 15184679
[55]  Andrews, B.W.; Iglesias, P.A. An information-theoretic characterization of the optimal gradient sensing response of cells. PLoS Comput. Biol. 2007, 3, e153, doi:10.1371/journal.pcbi.0030153. 17676949
[56]  Cheong, R.; Rhee, A.; Wang, C.J.; Nemenman, I.; Levchenko, A. Information transduction capacity of noisy biochemical signaling networks. Science 2011, 334, 354–358, doi:10.1126/science.1204553. 21921160
[57]  Lestas, I.; Vinnicombe, G.; Paulsson, J. Fundamental limits on the suppression of molecular fluctuations. Nature 2010, 467, 174–178, doi:10.1038/nature09333. 20829788
[58]  Hamming, R. Error detecting and error correcting codes. Bell Syst. Tech. J. 1950, 29, 147–160, doi:10.1002/j.1538-7305.1950.tb00463.x.
[59]  Porter, J.R.; Andrews, B.W.; Iglesias, P.A. A framework for designing and analyzing binary decision-making strategies in cellular systems. Integr. Biol. (Camb) 2012, 4, 310–317, doi:10.1039/c2ib00114d.
[60]  Fuller, D.; Chen, W.; Adler, M.; Groisman, A.; Levine, H.; Rappel, W.J.; Loomis, W.F. External and internal constraints on eukaryotic chemotaxis. Proc. Natl. Acad. Sci. USA 2010, 107, 9656–9659, doi:10.1073/pnas.0911178107. 20457897
[61]  Hu, B.; Chen, W.; Levine, H.; Rappel, W.J. Quantifying information transmission in eukaryotic gradient sensing and chemotactic response. J. Stat. Phys. 2011, 142, 1167–1186, doi:10.1007/s10955-011-0156-4. 21643513
[62]  Mortimer, D.; Dayan, P.; Burrage, K.; Goodhill, G.J. Bayes-optimal chemotaxis. Neural Comput. 2011, 23, 336–373, doi:10.1162/NECO_a_00075. 21105826
[63]  Yuan, J.; Chan, S.; Mortimer, D.; Nguyen, H.; Goodhill, G.J. Optimality and saturation in axonal chemotaxis. Neural Comput. 2013, 25, 833–853, doi:10.1162/NECO_a_00426. 23339614
[64]  Thomas, P.; Matuschek, H.; Grima, R. Intrinsic noise analyzer: A software package for the exploration of stochastic biochemical kinetics using the system size expansion. PLoS One 2012, 7, e38518, doi:10.1371/journal.pone.0038518. 22723865
[65]  Munsky, B.; Khammash, M. The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 2006, 124, 044104:1–044104:13.
[66]  Lillacci, G.; Khammash, M. Parameter estimation and model selection in computational biology. PLoS Comput. Biol. 2010, 6, e10000696.
[67]  Porter, J.R.; Burg, J.S.; Espenshade, P.J.; Iglesias, PA. Identifying a static nonlinear structure in a biological system using noisy, sparse data. J. Theor. Biol. 2012, 300, 232–241, doi:10.1016/j.jtbi.2012.01.037. 22310068
[68]  Neuert, G.; Munsky, B.; Tan, R.Z.; Teytelman, L.; Khammash, M.; van Oudenaarden, A. Systematic identification of signal-activated stochastic gene regulation. Science 2013, 339, 584–587, doi:10.1126/science.1231456. 23372015
[69]  Del Vecchio, D.; Ninfa, A.J.; Sontag, E.D. Modular cell biology: Retroactivity and insulation. Mol. Syst. Biol. 2008, 4, 161–10.1038/msb4100204. 18277378
[70]  Randall, A.; Guye, P.; Gupta, S.; Duportet, X.; Weiss, R. Design and connection of robust genetic circuits. Meth. Enzymol. 2011, 497, 159–186. 21601086
[71]  Wu, K.; Rao, C.V. Computational methods in synthetic biology: Towards computer-aided part design. Curr. Opin. Chem. Biol. 2012, 16, 318–322, doi:10.1016/j.cbpa.2012.05.003. 22727029
[72]  Kording, K. Decision theory: What “should” the nervous system do? Science 2007, 318, 606–610, doi:10.1126/science.1142998. 17962554
[73]  Doyle, J.C.; Csete, M. Architecture, constraints, and behavior. Proc. Natl. Acad. Sci. USA 2011, 108 Suppl 3, 15624–15630, doi:10.1073/pnas.1103557108. 21788505
[74]  Gillespie, D.T. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 2007, 58, 35–55, doi:10.1146/annurev.physchem.58.032806.104637. 17037977

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413