全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cells  2013 

Systems Biology — the Broader Perspective

DOI: 10.3390/cells2020414

Keywords: developmental biology, evolution, graphs, mathematical, networks, phenotypic processes, physiology, systems biology concepts

Full-Text   Cite this paper   Add to My Lib

Abstract:

Systems biology has two general aims: a narrow one, which is to discover how complex networks of proteins work, and a broader one, which is to integrate the molecular and network data with the generation and function of organism phenotypes. Doing all this involves complex methodologies, but underpinning the subject are more general conceptual problems about upwards and downwards causality, complexity and information storage, and their solutions provide the constraints within which these methodologies can be used. This essay considers these general aspects and the particular role of protein networks; their functional outputs are often the processes driving phenotypic change and physiological function—networks are, in a sense, the units of systems biology much as proteins are for molecular biology. It goes on to argue that the natural language for systems-biological descriptions of biological phenomena is the mathematical graph (a set of connected facts of the general form [process] (e.g., [activates] ). Such graphs not only integrate events at different levels but emphasize the distributed nature of control as well as displaying a great deal of data. The implications and successes of these ideas for physiology, pharmacology, development and evolution are briefly considered. The paper concludes with some challenges for the future.

References

[1]  Mendel, G. Experiments in Plant Hybridization. 1865. (Verhandlungen des naturforschenden Vereins Brünn.). Available online: www.mendelweb.org/Mendel.html (accessed on 1 January 2013).
[2]  Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life; John Murray: London, UK, 1859.
[3]  Guyton, A.C. Determination of cardiac output by equating venous return curves with cardiac output responses. Physiol. Rev. 1955, 35, 123–129.
[4]  Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544.
[5]  Turing, A.M. The chemical theory of morphogenesis. Phil. Trans R. Soc. 1952, 237B, 37–72.
[6]  Gilbert, S. Developmental Biology, 9th ed. ed.; Sinauer Press: Sunderland, MA, USA, 2010.
[7]  Caestecker, K.W.; Van de Walle, G.R. The role of BRCA1 in DNA double-strand repair: Past and present. Exp. Cell. Res. 2012, 319, 575–587, doi:10.1016/j.yexcr.2012.11.013.
[8]  Systems Biology, Philosophical Foundations; Boogerd, F., Bruggeman, F.J.S., Hofmeyr, H., Westerhoff, H.V., Eds.; Elsevier: Amsterdam, Netherlands, 2007.
[9]  Noble, D. Claude Bernard, the first systems biologist, and the future of physiolog. J. Exp. Physiol. 2008, 93, 16–26, doi:10.1113/expphysiol.2007.038695.
[10]  Marcum, J.A. The Conceptual Foundations of Systems Biology: An Introduction; Nova Science Publishers: Hauppauge, NY, USA, 2009.
[11]  The conceptual foundations of systems biology. Prog. Biophys. Mol. Biol. 2013, 111, 55–150, doi:10.1016/j.pbiomolbio.2012.11.001.
[12]  Bard, J.; Melham, T.; Noble, D. Epilogue: Some conceptual foundations of systems biology. Prog. Biophys. Mol. Biol. 2013, 3, 147–149, doi:10.1016/j.pbiomolbio.2012.12.002.
[13]  Bard, J. A new ontology (structured hierarchy) of human developmental anatomy for the first seven weeks (Carnegie Stages 1–20). J. Anat. 2012, 221, 406–416, doi:10.1111/j.1469-7580.2012.01566.x.
[14]  Schoenwolf, G.; Bleyl, S.; Brauer, P.; Francis-West, P. Larsen’s Human Embryology, 4th ed. ed.; Churchill Livingstone: Philadelphia, PA, USA, 2008.
[15]  Werner, E.O. In silico multicellular systems biology and minimal genomes. Drug Discovery Today 2003, 8, 1121–1127, doi:10.1016/S1359-6446(03)02918-0.
[16]  Goodwin, B.C. Temporal Organization in Cells; Academic Press: London, UK, 1963.
[17]  Bernard, C. Introduction à l'étude de la Médecine Expérimentale; J.B. Ballière et fils: Paris, France, 1865.
[18]  Monod, J.; Jacob, F. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant Biol. 1961, 26, 389–401, doi:10.1101/SQB.1961.026.01.048.
[19]  Gilbert, S.; Epel, D. Ecological Developmental Biology; Sinauer Press: Sunderland, MA, USA, 2008.
[20]  SA Biosciences. Pathways Central. Available online: www.sabiosciences.com/pathwaycentral.php (accessed on 14 June 2013).
[21]  Wang, D.Y.Q.; Cardelli, L.; Phillips, A.; Piterman, N.; Fisher, J. Computational modeling of the EGFR network elucidates control mechanisms regulating signal dynamics. BMC Syst. Biol. 2009, 3, 118–135, doi:10.1186/1752-0509-3-118.
[22]  Noble, D. Biophysics and systems biology. Phil. Trans. R. Soc. 2010, 368A, 1125–1139.
[23]  Bard, J. Driving developmental and evolutionary change: A systems biology view. Prog. Biophys. Mol. Biol. 2013, 2, 83–91, doi:10.1016/j.pbiomolbio.2012.09.006.
[24]  Dressler, G.R. Advances in early kidney specification, development and patterning. Development 2009, 136, 3863–3874, doi:10.1242/dev.034876.
[25]  Milner, R. A Calculus of Communicating Systems; Springer-Verlag: New York, NY, USA, 1980.
[26]  Algorithnmic Bioprocesses; Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E., Eds.; Springer: New York, NY, USA, 2009.
[27]  Karp, P.D.; Paley, S.M.; Krummenacker, M.; Latendresse, M.; Dale, J.M.; Lee, T.J.; Kaipa, P.; Gilham, F.; Spaulding, A.; Popescu, L.; et al. Pathway tools version 13.0: Integrated software for pathway/genome informatics and systems biology. Brief. Bioinf. 2010, 11, 40–79, doi:10.1093/bib/bbp043.
[28]  Kwiatkowska, M.; Norman, G.; Parker, D. Probabilistic model checking for systems biology. In Symbolic Systems Biology; Iyenga, M.S., Ed.; Jones and Bartlett: Burlington, MA, USA, 2010; pp. 31–59.
[29]  Wang, Y.; Christley, S.; Mjolsness, E.; Xie, X. Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent. BMC Syst. Biol. 2010, 4, 99–115, doi:10.1186/1752-0509-4-99.
[30]  Kauffman, S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theoret. Biol. 1969, 22, 437–467, doi:10.1016/0022-5193(69)90015-0.
[31]  Huang, S.; Ernberg, I.; Kauffman, S. Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective. Sem. Cell Dev. Biol. 2009, 20, 869–876, doi:10.1016/j.semcdb.2009.07.003.
[32]  Emmert-Streib, F.; Dehmer, M. Networks for systems biology: Conceptual connection of data and function. IET Syst. Biol. 2011, 5, 185–207, doi:10.1049/iet-syb.2010.0025.
[33]  The Systems Biology Markup Language. Available online: www.sbml.org (accessed on 14 June 2013).
[34]  Systems Biology Graphical Notation. Available online: www.sbgn.org (accessed on 14 June 2013).
[35]  Bard, J. A systems biology formulation of developmental anatomy. J. Anat. 2011, 218, 591–599, doi:10.1111/j.1469-7580.2011.01371.x.
[36]  Resource Description Framework. Available online: semanticweb.org/wiki/RDF (accessed on 14 June 2013).
[37]  Noble, D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature 1960, 188, 495–497, doi:10.1038/188495b0.
[38]  Physiome Project. Available online: physiomeproject.org (accessed on 14 June 2013).
[39]  Barabási, A.L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 2011, 12, 56–68, doi:10.1038/nrg2918.
[40]  Ben-Neriah, Y.; Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Imm. 2011, 12, 715–723, doi:10.1038/ni.2060.
[41]  Morriss-Kay, G.M.; Wilkie, A.O. Growth of the normal skull vault and its alteration in craniosynostosis: Insights from human genetics and experimental studies. J. Anat. 2005, 207, 637–653, doi:10.1111/j.1469-7580.2005.00475.x.
[42]  Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690, doi:10.1038/nchembio.118.
[43]  Cockell, S.J.; Weile, J.; Lord, P.; Wipat, C.; Andriychenko, D.; Pocock, M.; Wilkinson, D.; Young, M.; Wipat, A. An integrated dataset for in silico drug discovery. J. Integr. Bioinform. 2010, 7, 116.
[44]  Ihekwaba, A.E.; Nguyen, P.T.; Priami, C. Elucidation of functional consequences of signalling pathway interactions. BMC Bioinf. 2009, 10, 370, doi:10.1186/1471-2105-10-370.
[45]  Cinquin, O. Is the somitogenesis clock really cell-autonomous? A coupled-oscillator model of segmentation. J. Theor. Biol. 2003, 224, 459–468, doi:10.1016/S0022-5193(03)00193-0.
[46]  Mayr, E.; Provine, W. The Evolutionary Synthesis; Harvard University Press: Cambridge, MA, USA, 1980.
[47]  Irwin, D.E.; Bensch, S.; Price, T.D. Speciation in a ring. Nature 2001, 409, 333–337, doi:10.1038/35053059.
[48]  Waddington, C.H. Genetic assimilation of the bithorax phenotype. Evolution 1953, 10, 1–13, doi:10.2307/2406091.
[49]  Shapiro, J. Evolution: A View from the 21st Century; FT Press Science: New Jersey, NJ, USA, 2011.
[50]  The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 2012, 491, 56–65, doi:10.1038/nature11632.
[51]  Bard, J. A systems view of evolutionary genetics. Bioessays 2010, 32, 559–563, doi:10.1002/bies.200900166.
[52]  Waddington, C.H. The Strategy of the Genes: a Discussion of Some Aspects of Theoretical Biology; Allen and Unwin: London, UK, 1957.
[53]  Smith, N.P.; Crampin, E.J. Development of models of active ion transport for whole-cell. Mol. Biol. 2004, 85, 387–405.
[54]  Sydney Brenner. Available online: elegans.som.vcu.edu/Sydney.html (accessed on 14 June 2013).
[55]  Rolls, E.; Treve, A. Neural Networks and Brain Function; OUP: Oxford, UK, 1997.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413