全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Challenges  2013 

Bridging the Fields of Solar Cell and Battery Research to Develop High-Performance Anodes for Photoelectrochemical Cells and Metal Ion Batteries

DOI: 10.3390/challe4010116

Keywords: sustainable development, solar energy, electricity storage, photoelectrochemical cells, electrochemical batteries, titania, Na ion batteries, insertion, co-adsorbents

Full-Text   Cite this paper   Add to My Lib

Abstract:

Solar-to-electricity energy conversion and large scale electricity storage technologies are key to achieve a sustainable development of society. For energy conversion, photoelectrochemical solar cells were proposed as an economic alternative to the conventional Si-based technology. For energy storage, metal-ion batteries are a very promising technology. Titania (TiO 2) based anodes are widely used in photoelectrochemical cells and have recently emerged as safe, high-rate anodes for metal-ion batteries. In both applications, titania interacts with electrolyte species: molecules and metal ions. Details of this interaction determine the performance of the electrode in both technologies, but no unified theoretical description exists, e.g., there is no systematic description of the effects of Li, Na insertion into TiO 2 on solar cell performance (while it is widely studied in battery research) and no description of effects of surface adsorbents on the performance of battery anodes (while they are widely studied in solar cell research). In fact, there is no systematic description of interactions of electrolyte species with TiO 2 of different phases and morphologies. We propose a computation-focused study that will bridge the two fields that have heretofore largely been developing in parallel and will identify improved anode materials for both photoelectrochemical solar cells and metal-ion batteries.

References

[1]  Barbour, E.; Wilson, I.A.G.; Bryden, I.G.; McGregor, P.G.; Mulheran, P.A.; Hall, P.J. Towards an objective method to compare energy storage technologies: Development and validation of a model to determine the upper boundary of revenue available from electrical price arbitrage. Energy Environ. Sci. 2012, 5, 5425–5436, doi:10.1039/c2ee02419e.
[2]  Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663, doi:10.1021/cr900356p.
[3]  Wei, D. Dye sensitized solar cells. Int. J. Mol. Sci. 2010, 11, 1103–1113, doi:10.3390/ijms11031103.
[4]  Manzhos, S.; Jono, R.; Yamashita, K.; Fujisawa, J.-I.; Nagata, M.; Segawa, H. Study of interfacial charge transfer bands and electron recombination in the surface complexes of TCNE, TCNQ, and TCNAQ with TiO2. J. Phys. Chem. C 2011, 115, 21487–21493.
[5]  Tao, C.S.; Jiang, J.; Tao, M. Natural resource limitations to terawatt-scale solar cells. Solar Energy Mater. Solar Cells 2011, 95, 3176–3180, doi:10.1016/j.solmat.2011.06.013.
[6]  Branker, K.; Pathak, M.J.J.; Pearce, J.M. A review of solar photovoltaic levelized cost of electricity. Renew. Sust. Energ. Rev. 2011, 15, 4470–4482, doi:10.1016/j.rser.2011.07.104.
[7]  Graetzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344, doi:10.1038/35104607.
[8]  Boschloo, G.; Hagfeldt, A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 2009, 42, 1819–1826, doi:10.1021/ar900138m.
[9]  De Angelis, F.; Fantacci, S. Simulating dye-sensitized TiO2 Heterointerfaces in explicit solvent: Absorption spectra, energy levels, and dye desorption. J. Phys. Chem. Lett. 2011, 2, 813–817, doi:10.1021/jz200191u.
[10]  Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724–727, doi:10.1038/35037553.
[11]  Tran, T.T.; Obrovac, M.N. Alloy negative electrodes for high energy density metal-ion cells. J. Electrochem. Soc. 2011, 158, A1411–A1416, doi:10.1149/2.083112jes.
[12]  Chevrier, V.L.; Ceder, G. Challenges for Na-ion negative rlectrodes. J. Electrochem. Soc. 2011, 158, A1011–A1014, doi:10.1149/1.3607983.
[13]  Kim, S.W.; Seo, D.H.; Ma, X.H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721, doi:10.1002/aenm.201200026.
[14]  Hayashi, M.; Arai, H.; Ohtsuka, H.; Sakurai, Y. Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts. J. Power Sources 2003, 119–121, 617–620.
[15]  Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K.B.; Gonzalez, J.C.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901, doi:10.1039/c2ee02781j.
[16]  Liu, S.; Hu, J.J.; Yan, N.F.; Pan, G.L.; Li, G.R.; Gao, X.P. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy Environ. Sci. 2012, 5, 9743–9746, doi:10.1039/c2ee22987k.
[17]  Shukla, A.K.; Kumar, T.P. Lithium economy: Will it get the electric traction? J. Phys. Chem. Lett. 2013, 4, 551–555, doi:10.1021/jz3013497.
[18]  Tarascon, J.-M. Is lithium the new gold? Nat. Chem. 2010, 2, 510, doi:10.1038/nchem.680.
[19]  Xu, K.; von Cresce, A. Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. J. Mater. Res. 2012, 27, 2327–2341, doi:10.1557/jmr.2012.104.
[20]  Leung, K. First-principles modeling of the initial stages of organic solvent decomposition on LixMn2O4(100) surfaces. J. Phys. Chem. C 2012, 116, 9852–9861, doi:10.1021/jp212415x.
[21]  Leung, K. Electronic structure modeling of electrochemical reactions at electrode/electrolyte interfaces in lithium ion batteries. J. Phys. Chem. C 2013, 117, 1539–1547, doi:10.1021/jp308929a.
[22]  Vatamanu, J.; Borodin, O.; Smith, G.D. Molecular dynamics simulation studies of the structure of a mixed carbonate/LiPF6 electrolyte near graphite surface as a function of electrode potential. J. Phys. Chem. C 2012, 116, 1114–1121, doi:10.1021/jp2101539.
[23]  Muldoon, J.; Bucur, C.B.; Oliver, A.G.; Sugimoto, T.; Matsui, M.; Kim, H.S.; Allred, G.D.; Zajicek, J.; Kotani, Y. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 2012, 5, 5941–5950, doi:10.1039/c2ee03029b.
[24]  Yella, A.; Lee, H.W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.G.; Yeh, C.Y.; Zakeeruddin, S.M.; Gr?tzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based electrolyte exceed 12% efficiency. Science 2011, 334, 629–634, doi:10.1126/science.1209688.
[25]  Auvinen, S.; Alatalo, M.; Haario, H.; Jalava, J.-P.; Lamminma?ki, R.-J. Size and shape dependence of the electronic and spectral properties in TiO2 nanoparticles. J. Phys. Chem. C 2011, 115, 8484–8493.
[26]  Spadavecchia, F.; Cappelletti, G.; Ardizzone, S.; Ceotto, M.; Falciola, L. Electronic structure of pure and N-doped TiO2 nanocrystals by electrochemical experiments and first principles calculations. J. Phys. Chem. C 2011, 115, 6381–6391, doi:10.1021/jp2003968.
[27]  Han, L.; Islam, A.; Chen, H.; Malapaka, C.; Chiranjeevi, B.; Zhang, S.; Yang, X.; Yanagida, M. High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ. Sci. 2012, 5, 6057–6060, doi:10.1039/c2ee03418b.
[28]  Lon, H.; Zhou, D.; Zhang, M.; Peng, C.; Uchida, S.; Wang, P. Probing dye-correlated interplay of energetics and kinetics in mesoscopic titania solar cells with 4-tert-butylpyridine. J. Phys. Chem. C 2011, 115, 14408–14414, doi:10.1021/jp202826m.
[29]  Ren, X.; Feng, Q.; Zhou, G.; Huang, C.-H.; Wang, Z.-S. Effect of cations in coadsorbate on charge recombination and conduction band edge movement in dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 7190–7195, doi:10.1021/jp911630z.
[30]  Koops, S.E.; O’Regan, B.C.; Barnes, P.R.; Durrant, J.R. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 4808–4818.
[31]  Wang, H.; Peter, L.M. Influence of electrolyte cations on electron transport and electron transfer in dye-sensitized solar cells. J. Phys. Chem. C 2012, 116, 10468–10475, doi:10.1021/jp211807w.
[32]  Shi, Y.S.; Wang, Y.H.; Zhang, M.; Dong, X.D. Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: Lithium, sodium, potassium, and dimethylimidazolium. Phys. Chem. Chem. Phys. 2011, 13, 14590–14597, doi:10.1039/c1cp21020c.
[33]  Saravanan, K.; Ananthanarayanan, K.; Balaya, P. Mesoporous TiO2 with high packing density for superior lithium storage. Energy Environ. Sci. 2010, 3, 939–948, doi:10.1039/c003630g.
[34]  Dalton, A.S.; Belak, A.A.; van der Ven, A. Thermodynamics of Lithium in TiO2(B) from first principles. Chem. Mater. 2012, 24, 1568–1574, doi:10.1021/cm203283v.
[35]  Kavan, L.; Kalbá?, M.; Zukalová, M.; Exnar, I.; Lorenzen, V.; Nesper, R.; Graetzel, M. Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem. Mater. 2004, 16, 477–485, doi:10.1021/cm035046g.
[36]  Wagemaker, M.; Borghols, W.J.H.; Mulder, F.M. Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc. 2007, 129, 4323–4327, doi:10.1021/ja067733p.
[37]  Yang, Z.; Choi, D.; Kerisit, S.; Rosso, K.M.; Wang, D.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588–598, doi:10.1016/j.jpowsour.2009.02.038.
[38]  Hu, Y.S.; Kienle, L.; Guo, Y.G.; Maier, J. High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 2006, 18, 1421–1426, doi:10.1002/adma.200502723.
[39]  Shin, J.-Y.; Joo, J.H.; Samuelis, D.; Maier, J. Oxygen-deficient TiO2-δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 2012, 24, 543–551, doi:10.1021/cm2031009.
[40]  Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603, doi:10.1021/cm901452z.
[41]  Zhang, L.; Zhang, Z.; Redfern, P.C.; Curtiss, L.A.; Amine, K. Molecular engineering towards safer lithium-ion batteries: A highly stable and compatible redox shuttle for overcharge protection. Energy Environ. Sci. 2012, 5, 8204–8207, doi:10.1039/c2ee21977h.
[42]  Nakayama, M.; Kotobuki, M.; Munakata, H.; Nogami, M.; Kanamura, K. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides. Phys. Chem. Chem. Phys. 2012, 14, 10008–10014, doi:10.1039/c2cp40634a.
[43]  Jalem, R.; Yamamoto, Y.; Shiiba, H.; Nakayama, M.; Munakata, H.; Kasuga, T.; Kanamura, K. Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater. 2013, 25, 425–430, doi:10.1021/cm303542x.
[44]  Yamagata, M.; Matsui, Y.; Sugimoto, T.; Kikuta, M.; Higashizaki, T.; Kono, M.; Ishikawa, M. High-performance graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid. J. Power Sources 2013, 227, 60–64, doi:10.1016/j.jpowsour.2012.11.013.
[45]  Ryan, K.R.; Trahey, L.; Ingram, B.J.; Burrell, A.K. Limited stability of ether-based solvents in lithium–oxygen batteries. J. Phys. Chem. C 2012, 116, 19724–19728, doi:10.1021/jp306797s.
[46]  Fehse, M.; Fischer, F.; Tessier, C.; Stievano, L.; Monconduit, L. Tailoring of phase composition and morphology of TiO2-based electrode materials for lithium-ion batteries. J. Power Sources 2013, 231, 23–28, doi:10.1016/j.jpowsour.2012.12.058.
[47]  Yu, J.; Sushko, M.L.; Kerisit, S.; Rosso, K.M.; Liu, J. Kinetic Monte Carlo study of ambipolar lithium ion and electron-polaron diffusion into nanostructured TiO2. J. Phys. Chem. Lett. 2012, 3, 2076–2081, doi:10.1021/jz300562v.
[48]  Ren, Y.; Zhang, J.; Liu, Y.; Li, H.; Wei, H.; Li, B.; Wang, X. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries. Appl. Mater. Interfaces 2012, 4, 4776–4780, doi:10.1021/am301131h.
[49]  Nishizawa, H.; Aoki, Y. The crystallization of anatase and the conversion to bronze-type TiO2 under hydrothermal conditions. J. Solid. State Chem. 1985, 56, 158–165, doi:10.1016/0022-4596(85)90052-0.
[50]  Kopidakis, N.; Benkstein, K.D.; van de Lagemaat, J.; Frank, A.J. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 2003, 107, 11307–11315.
[51]  Sun, Z.; Zhang, R.-K.; Xie, H.-H.; Wang, H.; Liang, M.; Xue, S. Nonideal charge recombination and conduction band edge shifts in dye-sensitized solar cells based on adsorbent doped poly(ethylene oxide) electrolytes. J. Phys. Chem. C 2013, 117, 4364–4373, doi:10.1021/jp311146h.
[52]  Kim, J.-Y.; Kim, J.Y.; Lee, D.-K.; Kim, B.; Kim, H.; Koe, M.J. Importance of 4-tert-butylpyridine in electrolyte for dye-sensitized solar cells employing SnO2 electrode. J. Phys. Chem. C 2012, 116, 22759–22766, doi:10.1021/jp307783q.
[53]  Asaduzzaman, A.M.; Schreckenbach, G. Computational studies on the interactions among redox couples, additives and TiO2: Implications for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2010, 12, 14609–14618, doi:10.1039/c0cp01304h.
[54]  Manzhos, S.; Segawa, H.; Yamashita, K. The effect of ligand substitution and water co-adsorption on the adsorption dynamics and energy level matching of amino-phenyl acid dyes on TiO2. Phys. Chem. Chem. Phys. 2012, 14, 1749–1755, doi:10.1039/c2cp23039a.
[55]  Manzhos, S.; Segawa, H.; Yamashita, K. Effect of nuclear vibrations, temperature, and orientation on injection and recombination conditions in amino-phenyl acid dyes on TiO2. Proc. SPIE 2012, 8438, 843814.
[56]  Manzhos, S.; Segawa, H.; Yamashita, K. Effect of nuclear vibrations, temperature, co-adsorbed water, and dye orientation on light absorption, charge injection and recombination conditions in organic dyes on TiO2. Phys. Chem. Chem. Phys. 2013, 15, 1141–1147, doi:10.1039/c2cp43448b.
[57]  Haque, S.A.; Handa, S.; Peter, K.; Palomares, E.; Thelakkat, M.; Durrant, J.R. Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: Towards a quantitative structure–function relationship. Angew. Chem. Int. Ed. 2005, 44, 5740–5744, doi:10.1002/anie.200500363.
[58]  Clifford, J.N.; Palomares, E.; Nazeeruddin, M.K.; Gr?tzel, M.; Nelson, J.; Li, X.; Long, N.J.; Durrant, J.R. Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: Free energy vs distance dependence. J. Am. Chem. Soc. 2004, 126, 5225–5233, doi:10.1021/ja039924n.
[59]  Ceder, G.; Hautier, G.; Jain, A.; Ong, S.P. Recharging lithium battery research with first-principles methods. MRS Bull. 2011, 36, 185–191.
[60]  Malyi, O.I.; Tan, T.L.; Manzhos, S. A comparative computational study of structures, diffusion, and dopant interactions between Li and Na insertion into Si. Appl. Phys. Express 2013, 6, 027301, doi:10.7567/APEX.6.027301.
[61]  Malyi, O.I.; Tan, T.L.; Manzhos, S. In search of high performance anode materials for Mg batteries: Computational studies of Mg in Ge, Si, and Sn. J. Power Sources 2013, 233, 341–345, doi:10.1016/j.jpowsour.2013.01.114.
[62]  Wan, W.H.; Zhang, Q.F.; Cui, Y.; Wang, E.G. First principles study of lithium insertion in bulk silicon. J. Phys. Condens. Matter 2010, 22, 415501–415509, doi:10.1088/0953-8984/22/41/415501.
[63]  Cui, Z.; Gao, F.; Cui, Z.; Qu, J. A second nearest neighbor embedded atom method interatomic potential for Li-Si alloys. J. Power Sources 2012, 207, 150–159, doi:10.1016/j.jpowsour.2012.01.145.
[64]  Miao, L.; Wu, J.; Jiang, J.; Liang, P. First-principles study on the synergetic mechanism of SnO2 and graphene as a lithium ion battery anode. J. Phys. Chem. C 2013, 117, 23–27, doi:10.1021/jp306572c.
[65]  Kaghazchi, P. Theoretical studies of Li incorporation into Si(111). J. Phys. Condens. Matter 2013, 25, 095008, doi:10.1088/0953-8984/25/9/095008.
[66]  Kaghazchi, P. Theoretical studies of lithium incorporation into α-Sn(100). J. Chem. Phys. 2013, 138, 054706, doi:10.1063/1.4789525.
[67]  Peng, B.; Cheng, F.; Tao, Z.; Chen, J. Lithium transport at silicon thin film: Barrier for high-rate capability anode. J. Chem. Phys. 2010, 133, 034701, doi:10.1063/1.3462998.
[68]  Zhang, Q.; Zhang, W.; Wan, W.; Cui, Y.; Wang, E. Lithium insertion in silicon nanowires: An ab initio study. Nano Lett. 2010, 10, 3243–3249, doi:10.1021/nl904132v.
[69]  Jung, S.C.; Han, Y.-K. Facet-dependent lithium intercalation into Si crystals: Si(100) vs. Si(111). Phys. Chem. Chem. Phys. 2011, 13, 21282–21287, doi:10.1039/c1cp22026h.
[70]  Leung, K.; Qi, Y.; Zavadil, K.R.; Jung, Y.S.; Dillon, A.C.; Cavanagh, A.S.; Lee, S.-H.; George, S.M. Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: First-principles modeling and experimental studies. J. Am. Chem. Soc. 2011, 133, 14741–14754.
[71]  Shao, N.; Sun, X.-G.; Dai, S.; Jiang, D. Oxidation potentials of functionalized sulfone solvents for high-voltage Li-ion batteries: A computational study. J. Phys. Chem. B 2012, 116, 3235–3238, doi:10.1021/jp211619y.
[72]  Kim, S.-P.; van Duin, A.C.T.; Shenoy, V.B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study. J. Power Sources 2011, 196, 8590–8597, doi:10.1016/j.jpowsour.2011.05.061.
[73]  Ganesh, P.; Kent, P.R.C.; Jiang, D. Solid–electrolyte interphase formation and electrolyte reduction at Li-ion battery graphite anodes: Insights from first-principles molecular dynamics. J. Phys. Chem. C 2012, 116, 24476–24481, doi:10.1021/jp3086304.
[74]  Malyi, O.I.; Tan, T.L.; Manzhos, S. A computational study of the insertion of Li, Na, and Mg atoms into Si(111) nanosheets. Nano Energy 2013, doi:10.1016/j.nanoen.2013.04.007.
[75]  Carvalho, A.; Rayson, M.J.; Briddon, P.R.; Manzhos, S. Effect of the adsorption of ethylene carbonate on Si surfaces on the Li intercalation behavior(Submitted). .
[76]  Kusama, H.; Orita, H.; Sugihara, H. TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: A periodic density functional study. Langmuir 2008, 24, 4411–4419, doi:10.1021/la703696f.
[77]  Kawata, K.; Goto, T.; Yoshizaki, H. Additives for dye-sensitized solar cells. February 2013. Available online: http://www.sumobrain.com/patents/WO2013026563.html (accessed on 18 June 2013).
[78]  Scheers, J.; Johansson, P.; Szczeciński, P.; Wieczorek, W.; Armand, M.; Jacobsson, P. Benzimidazole and imidazole lithium salts for battery electrolytes. J. Power Sources 2010, 195, 6081–6087, doi:10.1016/j.jpowsour.2009.12.052.
[79]  Ichimura, A.S.; Mack, B.M.; Usmani, S.M.; Mars, D.G. Direct synthesis of anatase films with ~100% (001) facets and [001] preferred orientation. Chem. Mater. 2012, 24, 2324–2329, doi:10.1021/cm300573m.
[80]  Werner, J.H.; Zapf-Gottwick, R.; Koch, M.; Fischer, K. Toxic substances in photovoltaic modules. In Proceedings of the 21st International Photovoltaic Science and Engineering Conference, Fukuoka, Japan, 28 November–2 December 2011.
[81]  O’Regan, B.; Gr?tzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740, doi:10.1038/353737a0.
[82]  Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem. Mater. 2010, 22, 1915–1925, doi:10.1021/cm9036988.
[83]  Yum, J.-H.; Baranoff, E.; Kessler, F.; Moehl, T.; Ahmad, S.; Bessho, T.; Marchioro, A.; Ghadiri, E.; Moser, J.-E.; Yi, C.; et al. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat. Commun. 2012, 3, 631–638, doi:10.1038/ncomms1655.
[84]  Shin, J.-Y.; Samuelis, D.; Maier, J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: Emphasis on interfacial storage phenomena. Adv. Funct. Mater. 2011, 21, 3464–3472, doi:10.1002/adfm.201002527.
[85]  Armstrong, A.R.; Arrouvel, C.; Gentili, V.; Parker, S.C.; Islam, M.S.; Bruce, P.G. Lithium coordination sites in LixTiO2(B): A structural and computational study. Chem. Mater. 2010, 22, 6426–6432, doi:10.1021/cm102589x.
[86]  Shen, L.; Zhang, X.; Li, H.; Yuan, C.; Cao, G. Design and tailoring of a three-dimensional TiO2-graphene-carbon nanotube nanocomposite for fast lithium storage. J. Phys. Chem. Lett. 2011, 2, 3096–3101, doi:10.1021/jz201456p.
[87]  Kang, J.; Wei, S.H.; Zhu, K.; Kim, Y.H. First-principles theory of electrochemical capacitance of nanostructured materials: Dipole-assisted subsurface intercalation of lithium in pseudocapacitive TiO2 anatase nanosheets. J. Phys. Chem. C 2011, 115, 4909–4915, doi:10.1021/jp1090125.
[88]  Zakharova, G.C.; J?hne, C.; Popa, A.; T?schner, Ch.; Gemming, Th.; Leonhardt, A.; Büchner, B.; Klingeler, R. Anatase nanotubes as an electrode material for lithium-ion batteries. J. Phys. Chem. C 2012, 116, 8714–8720, doi:10.1021/jp300955r.
[89]  Zhu, K.; Wang, Q.; Kim, J.-H.; Pesaran, A.A.; Frank, J.A. Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays. J. Phys. Chem. C 2012, 116, 11895–11899, doi:10.1021/jp301884x.
[90]  Wagemaker, M.; Mulder, F.M. Properties and promises of nanosized insertion materials for Li-ion batteries. Acc. Chem. Res. 2012, doi:10.1021/ar2001793.
[91]  Manzhos, S.; Segawa, H.; Yamashita, K. Effect of isotopic substitution on elementary processes in dye-sensitized solar cells: Deuterated amino-phenyl acid dyes on TiO2. Computation 2013, 1, 1–15, doi:10.3390/computation1010001.
[92]  Miyasaka, T. Toward printable sensitized mesoscopic solar cells: Light-harvesting management with thin TiO2 films. J. Phys. Chem. Lett. 2011, 2, 262–269, doi:10.1021/jz101424p.
[93]  Kusama, H.; Sugihara, H.; Sayama, K. Effect of cations on the interactions of Ru dye and iodides in dye-sensitized solar cells: A density functional theory study. J. Phys. Chem. C 2011, 115, 2544–2552, doi:10.1021/jp109114b.
[94]  Li, R.; Liu, J.; Cai, N.; Zhang, M.; Wang, P. Synchronously reduced surface states, charge recombination, and light absorption length for high-performance organic dye-sensitized solar cells. J. Phys. Chem. B 2010, 114, 4461–4464, doi:10.1021/jp101222s.
[95]  Yang, H.; Huang, S.; Huang, X.; Fan, F.F.; Liang, W.T.; Liu, X.H.; Chen, L.Q.; Huang, J.Y.; Li, J.; Zhu, T.; et al. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 2012, 12, 1953–1958, doi:10.1021/nl204437t.
[96]  Mizuno, Y.; Okubo, M.; Hosono, E.; Kudo, T.; Zhou, H.; Oh-ishi, K. Suppressed activation energy for interfacial charge transfer of a Prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg2+). J. Phys. Chem. C 2013, 117, 10877–10882, doi:10.1021/jp311616s.
[97]  Tatsumi, H.; Sasahara, A.; Tomitori, M. Adsorption of propylene carbonate molecules on a TiO2(110) surface. J. Phys. Chem. C 2013, 117, 10410–10416, doi:10.1021/jp312666z.
[98]  Listorti, A.; Creager, C.; Sommeling, P.; Kroon, J.; Palomares, E.; Fornelli, A.; Breen, B.; Barnes, P.R.F.; Durrant, J.R.; Law, C.; et al. The mechanism behind the beneficial effect of light soaking on injection efficiency and photocurrent in dye sensitized solar cells. Energy Environ. Sci. 2011, 4, 3494–3501, doi:10.1039/c1ee01443a.
[99]  Duncan, W.R.; Prezhdo, O.V. Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu. Rev. Phys. Chem. 2007, 58, 143–184, doi:10.1146/annurev.physchem.58.052306.144054.
[100]  Hibino, M.; Abe, K.; Mochizuki, M.; Miyayama, M. Amorphous titanium dioxide electrode for high-rate discharge and charge. J. Power Sources 2004, 126, 139–143, doi:10.1016/j.jpowsour.2003.08.025.
[101]  Armstrong, A.R.; Armstrong, G.; Canales, J.; Bruce, P.G. TiO2-B nanowires as negative electrodes for rechargeable lithium batteries. J. Power Sources 2005, 146, 501–506, doi:10.1016/j.jpowsour.2005.03.057.
[102]  Wang, Q.; Wen, Z.H.; Li, J.H. Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures. Inorg. Chem. 2006, 45, 6944–6949, doi:10.1021/ic060477x.
[103]  Kavan, L.; Rathousky, J.; Gratzell, M.; Shklover, V.; Zukal, A. Surfactant-templated TiO2 (anatase): Characteristic features of lithium insertion electrochemistry in organized nanostructures. J. Phys. Chem. B 2000, 104, 12012–12020, doi:10.1021/jp003609v.
[104]  Wagemaker, M.; Lutzenkirchen-Hecht, D.; van Well, A.A.; Frahm, R. Atomic and electronic bulk versus surface structure:? Lithium intercalation in anatase TiO2. J. Phys. Chem. B 2004, 108, 12456–12464, doi:10.1021/jp048567f.
[105]  Li, J.R.; Tang, Z.L.; Zhang, Z.T. Preparation and novel lithium intercalation properties of titanium oxide nanotubes. Electrochem. Solid-State Lett. 2005, 8, A316–A319, doi:10.1149/1.1904465.
[106]  Subramanian, V.; Karki, A.; Gnanasekar, K.I.; Eddy, F.P.; Rambabu, B. Nanocrystalline TiO2 (anatase) for Li-ion batteries. J. Power Sources 2006, 159, 186–192, doi:10.1016/j.jpowsour.2006.04.027.
[107]  Borghols, W.J.H.; Wagemaker, M.; Lafont, U.; Keller, E.M.; Mulder, F.M. Impact of nanosizing on lithiated rutile TiO2. Chem. Mater. 2008, 20, 2949–2955, doi:10.1021/cm703376e.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133