全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Climate  2013 

Exploring Aerosol Effects on Rainfall for Brisbane, Australia

DOI: 10.3390/cli1030120

Keywords: natural and anthropogenic emission, spatial analysis, geostatistics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The majority of studies assessing aerosol effects on rainfall use coarse spatial scale (1° latitude/longitude or more) and multi-seasonal or decadal data sets. Here, we present results from a spatial correlation of aerosol size distribution and rain rate for selected stratiform and cumuliform precipitation events. The chemistry transport version of the Weather Research and Forecasting model was used to estimate aerosol parameters during rain events Aerosol maps were then compared with observations of rainfall using geostatistics for the first time. The cross-variogram analysis showed that anthropogenic aerosol was associated with areas of less intense rain within the stratiform system studied. For cumuliform systems, cross-variogram analysis found that anthropogenic emissions may be associated with enhanced rain downwind of aerosol emissions. We conclude that geostatistics provides a promising new technique to investigate relationships between aerosols and rainfall at spatial scales of 1 km which complements more commonly used methods to study aerosol effects on rainfall.

References

[1]  Ahrens, C.D. Essentials of Meteorology: An Invitation to the Atmosphere, 6th ed. ed.; Brooks/Cole Cengage Learning: Belmont, CA., USA, 2012.
[2]  Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing; Intergovernmental Panel on Climate Change: Cambridge, UK, New York, NY, USA, 2007.
[3]  Levin, Z.; Cotton, W.R. Aerosol Pollution Impact on Precipitation, A Scientific Review; Springer, 2009.
[4]  Andreae, M.O.; Rosenfeld, D. Aerosol-cloud-precipitation interactions. Part 1, The nature and sources of cloud-active aerosols. Earth Sci. Rev. 2008, 89, 13–41.
[5]  Warner, J. A reduction in rainfall associated with smoke from suger-cane fires—An inadvertent weather modification? J. Appl. Meteorol. 1968, 7, 247–251, doi:10.1175/1520-0450(1968)007<0247:ARIRAW>2.0.CO;2.
[6]  Rosenfeld, D. Suppression of rain and snow by urban and industrial air pollution. Science 2000, 287, 1793–1796, doi:10.1126/science.287.5459.1793.
[7]  Bigg, E.K. Trends in rainfall associated with sources of air pollution. Environ. Chem. 2008, 5, 184–193, doi:10.1071/EN07086.
[8]  Jin, M.; Shepherd, J.M.; King, M.D. Urban aerosols and their variations with clouds and rainfall: A case study for New York and Houston. J. Geophys. Res. 2005, 110, 1–12.
[9]  Lacke, M.C.; Mote, T.L.; Shepherd, J.M. Aerosols and associated precipitation patterns in Atlanta. Atmos. Environ. 2009, 43, 4359–4373, doi:10.1016/j.atmosenv.2009.04.022.
[10]  Koren, I.; Altaratz, O.; Remer, L.A.; Feingold, G.; Martins, J.V.; Heiblum, R.H. Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat. Geosci. 2012, 5, 118–122.
[11]  Van den Heever, S.C.; Cotton, W.R. Urban aerosol impacts on downwind convective storms. J. Appl. Meteorol. Climatol. 2007, 46, 828–850.
[12]  Yang, Q.; Gustafson, W.I., Jr.; Fast, J.D.; Wang, H.; Easter, R.C.; Wang, M.; Ghan, S.J.; Berg, L.K.; Leung, L.R.; Morrison, H. Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modelling study using WRF-Chem. Atmos. Chem. Phys. Discuss. 2012, 12, 14623–14667, doi:10.5194/acpd-12-14623-2012.
[13]  Lohmann, U. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM. Atmos. Chem. Phys. 2008, 8, 2115–2131, doi:10.5194/acp-8-2115-2008.
[14]  Han, J.-Y.; Baik, J.-J.; Khain, A.P. A numerical study of urban aerosol impacts on clouds and precipitation. J. Atmos. Sci. 2012, 69, 504–520, doi:10.1175/JAS-D-11-071.1.
[15]  Lin, Y.; Min, Q.; Zhuang, G.; Wang, Z.; Gong, W.; Li, R. Spatial features of rain frequency change and pollution and associated aerosols. Atmos. Chem. Phys. Discuss. 2011, 11, 8747–8776.
[16]  Zhang, L.; Liao, H.; Li, J. Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J. Geophys. Res.: Atmos. 2010, 115, doi:10.1029/2009JD012299.
[17]  Khain, A.P.; BenMoshe, N.; Pokrovsky, A. Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci. 2008, 65, 1721–1748, doi:10.1175/2007JAS2515.1.
[18]  Lee, S.S.; Penner, J.E.; Saleeby, S.M. Aerosol effects on liquid-water path of thin stratocumulus clouds. J. Geophys. Res. 2009, 114, doi:10.1029/2008JD010513.
[19]  Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics From Air Pollution to Climate Change, 2nd ed. ed.; John Wiley and Sons: Hoboken, NJ., USA, 2006.
[20]  Lin, Y.; Min, Q.; Zhuang, G.; Zhuang, Z.; Gong, W.; Li, R. Spatial features of rain frequency change induced by pollution and aossociated aerosols. Atmos. Chem. Phys. Discuss. 2010, 10, 14495–14511.
[21]  Ayers, G. Air pollution and climate change: Has air pollution suppressed rainfall over Australia? Clean Air Soc. Aust. N. Z. 2005, 39, 51–57.
[22]  Ayers, G. Air pollution and precipitation suppression over SE Australia: Critical review of evidence presented by Rosenfeld (2000) and Rosenfeld (2006). Tellus 2009, 61B, 685–693.
[23]  Qin, Y.; Mitchell, R.M. Characterisation of episodic aerosol types over the Australian continent. Atmos. Chem. Phys. 2009, 9, 1943–1956, doi:10.5194/acp-9-1943-2009.
[24]  Chan, Y. Griffith University: Brisbane, Australia, 1997.
[25]  Cheung, H.C.; Morawska, L.; Ristovski, Z.D. Observation of new particle formation in subtropical urban environment. Atmos. Chem. Phys. 2011, 11, 3823–3833, doi:10.5194/acp-11-3823-2011.
[26]  Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY., USA, 1997.
[27]  Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed. ed.; John Wiley and Sons: Chichester, West Sussex, England, 2007.
[28]  Grimes, D.I.F.; Pardo-Iguzquiza, E. Geostatistical analysis of rainfall. Geogr. Anal. 2010, 42, 136–160, doi:10.1111/j.1538-4632.2010.00787.x.
[29]  Chappell, A. An Introduction to Geostatistics. In Key Methods in Geography, 2nd ed.; Clifford, N., French, S., Valentine, G., Eds.; SAGE: London, Great Britain, 2010.
[30]  Pebesma, E.J. Multivariable geostatistics in S: The GSTAT package. Comp. Geosci. 2004, 30, 683–691, doi:10.1016/j.cageo.2004.03.012.
[31]  Bostan, P.A.; Heuvelink, G.B.M.; Akyurek, S.Z. Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 115–126, doi:10.1016/j.jag.2012.04.010.
[32]  McComiskey, A.; Feingold, G. The scale problem in quantifying aerosol indirect effects. Atmos. Chem. Phys. 2012, 12, 1031–1049, doi:10.5194/acp-12-1031-2012.
[33]  Yu, X.; Zhu, B.; Zhang, M. Seasonal variability of aerosol optical properties over Beijing. Atmos. Environ. 2009, 43, 4095–4101, doi:10.1016/j.atmosenv.2009.03.061.
[34]  Sheridan, P.J.; Andrews, E.; Ogren, J.A.; Tackett, J.L.; Winker, D.M. Vertical profiles of aerosol optical properties over Central Illinois and comparison with surface and satellite measurements. Atmos. Chem. Phys. Discuss. 2012, 12, 17187–17244.
[35]  Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci. 2002, 59, 461–483, doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.
[36]  Dusek, U.; Frank, G.P.; Hildebrandt, L.; Curtius, J.; Schneider, J.; Walter, S.; Chand, D.; Drewnick, F.; Hings, S.; Jung, D.; et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 2006, 312, 1375–1378.
[37]  Rosenfeld, D. Aerosols, clouds and climate. Science 2006, 312, 1323–1324, doi:10.1126/science.1128972.
[38]  Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975, doi:10.1016/j.atmosenv.2005.04.027.
[39]  Remer, L.A.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973.
[40]  Drury, E.; Jacob, D.; Spurr, D.R.; Wang, J.; Shinozuka, Y.; Anderson, B.; Clarke, A.; Dibb, J.; McNaughton, C.; Weber, R. Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources. J. Geophys. Res. Atmos. 2010, 115, doi:10.1029/2009JD012629.
[41]  Jones, T.A.; Christopher, S.A.; Quaas, J. A six year satellite-based assessment of the regional variations in aerosol indirect effects. Atmos. Chem. Phys. 2009, 9, 4091–4114.
[42]  Remer, L.A.; Kleidman, R.G.; Levy, R.C.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Martins, J.V.; Ichoku, C.; Koren, I.; Yu, H.; et al. Global aerosol climatology from the MODIS satellite sensor. J. Geophys. Res. 2008, 113, doi:10.1029/2007JD009661.
[43]  Várnai, T.; Marshak, A. Analysis of co-located MODIS and CALIPSO observations near clouds. Atmos. Meas. Tech. Discuss. 2011, 4, 6861–6881, doi:10.5194/amtd-4-6861-2011.
[44]  Stockwell, W.R.; Kirchner, F.; Kuhn, M.; Seefeld, S. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. 1997, 102, 25847–25879.
[45]  Ackermann, I.J.; Hass, H.; Memmesheimer, M.; Ebel, A.; Binkowski, F.S.; Shankar, U. Modal aerosol dynamics model for Europe: Development and first applications. Atmos. Environ. 1998, 32, 2981–2999.
[46]  Wu, L.; Su, H.; Jiang, J.H. Regional simulations of deep convection and biomass burning over South America: 1. Model evaluations using multiple satellite data sets. J. Geophys. Res. 2011, 116, doi:10.1029/2011JD016105.
[47]  Fast, J.D.; Gustafson, W.I.; Chapman, E.G.; Easter, R.C.; Rishel, J.P.; Zaveri, R.A.; Grell, G.A.; Barth, M.C. The aerosol modeling testbed: A community tool to objectively evaluate aerosol process modules. Bull. Am. Meteorol. Soc. 2011, 92, 343–360.
[48]  Peckham, S.; Grell, G.; McKeen, S.; Barth, M.; Pfister, G.; Wiedinmyer, C.; Fast, J.; Gustafson, W.; Ghan, S.; Zaveri, R.; et al. WRF/Chem Version 3.3 User’s Guide. In NOAA; NOAA Technical Memo.: Boulder, CO, USA, 2011; p. 98.
[49]  Choobari, O.A.; Zawar-Reza, P.; Sturman, A. Atmospheric forcing of the three-dimensional distribution of dust particles over Australia: A case study. J. Geophys. Res. 2012, 117, doi:10.1029/2012JD017748.
[50]  Grell, G.; Freitas, S.R.; Stuefer, M.; Fast, J. Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts. Atmos. Chem. Phys. 2011, 11, 5289–5303.
[51]  Barnard, J.C.; Fast, J.D.; Paredes-Miranda, G.; Arnott, W.P.; Laskin, A. Technical note: Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol Optical Properties” module using data from the MILAGRO campaign. Atmos. Chem. Phys. 2010, 10, 7325–7340.
[52]  Saide, P.E.; Spak, S.N.; Carmichael, G.R.; Mena-Carrasco, M.A.; Howell, S.; Leon, D.C.; Snider, J.R.; Bandy, A.R.; Collett, J.L.; Benedict, K.B.; et al. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx. Atmos. Chem. Phys. Discuss. 2011, 11, 29723–29775, doi:10.5194/acpd-11-29723-2011.
[53]  Jiang, F.; Liu, Q.; Huang, X.; Wang, T.; Zhuang, B.; Xie, M. Regional modeling of secondary organic aerosol over China using WRF/Chem. J. Aerosol Sci. 2012, 43, 57–73.
[54]  Schultz, M.G.; Backman, L.; Balkanski, Y.; Bjoerndalsaeter, S.; Brand, R.; Burrows, J.P.; Dalsoeren, S.; Vasconcelos, M.D.; Grodtmann, B.; Hauglustaine, D.A.; et al. REanalysis of the TROpospheric Chemical Composition over the Past 40 years (RETRO)—A Long-Term Global Modeling Study of Tropospheric Chemistry Final Report; Max Planck Institute for Meteorology, Hamburg: Jülich/Hamburg, Germany, 2007.
[55]  Olivier, J.G.J.; van Aardenne, J.A.; Dentener, F.J.; Pagliari, V.; Ganzeveld, L.N.; Peters, J.A.H.W. Recent trends in global greenhouse gas emissions: Regional trends 1970–2000 and spatial distributionof key sources in 2000. Environ. Sci. 2005, 2, 81–99.
[56]  Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210.
[57]  Menzel, W.P.; Frey, R.A.; Baum, B.A.; Zhang, H. Cloud Top Properties and Cloud Phase Algorithm Theoretical Basis Document; NASA: USA, 2006.
[58]  Geosciences-Australia, Global Map Australia 1M 2001 Product User Guide. Geosciences-Australia; Australian Government: Canberra, Australia, 2004.
[59]  Radhi, M.; Box, M.A.; Box, G.P.; Mitchell, R.M.; Cohen, D.D.; Stelcer, E.; Keywood, M.D. Optical, physical and chemical characteristics of Australian continental aerosols: Results from a field experiment. Atmos. Chem. Phys. 2010, 10, 5925–5942, doi:10.5194/acp-10-5925-2010.
[60]  Sorooshian, A.; Feingold, G.; Lebsock, M.D.; Jiang, H.; Stephens, G.L. Deconstructing the precipitation susceptibility construct: Improving methodology for aerosol-cloud precipitation studies. J. Geophys. Res. 2010, 115, doi:10.1029/2009JD013426.
[61]  Warneck, P.; Williams, J. The Atmospheric Chemist’s Companion, Numerical Data for Use in the Atmospheric Sciences. Springer, 2012.
[62]  Dixon, P.G.; Mote, T.L. Patterns and causes of Atlanta’s urban heat island–initiated precipitation. J. Appl. Meteorol. 2003, 42, 1273–1284.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413