全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Coatings  2013 

Gas Permeation, Mechanical Behavior and Cytocompatibility of Ultrathin Pure and Doped Diamond-Like Carbon and Silicon Oxide Films

DOI: 10.3390/coatings3040268

Keywords: thin films, diamond-like carbon, permeability, cytocompatibility

Full-Text   Cite this paper   Add to My Lib

Abstract:

Protective ultra-thin barrier films gather increasing economic interest for controlling permeation and diffusion from the biological surrounding in implanted sensor and electronic devices in future medicine. Thus, the aim of this work was a benchmarking of the mechanical oxygen permeation barrier, cytocompatibility, and microbiological properties of inorganic ~25 nm thin films, deposited by vacuum deposition techniques on 50 μm thin polyetheretherketone (PEEK) foils. Plasma-activated chemical vapor deposition (direct deposition from an ion source) was applied to deposit pure and nitrogen doped diamond-like carbon films, while physical vapor deposition (magnetron sputtering in pulsed DC mode) was used for the formation of silicon as well as titanium doped diamond-like carbon films. Silicon oxide films were deposited by radio frequency magnetron sputtering. The results indicate a strong influence of nanoporosity on the oxygen transmission rate for all coating types, while the low content of microporosity (particulates, etc.) is shown to be of lesser importance. Due to the low thickness of the foil substrates, being easily bent, the toughness as a measure of tendency to film fracture together with the elasticity index of the thin films influence the oxygen barrier. All investigated coatings are non-pyrogenic, cause no cytotoxic effects and do not influence bacterial growth.

References

[1]  Mazzuferi, M.; Bovolenta, R.; Bocchi, M.; Braun, T.; Bauer, J.; Jung, E.; Gambari, R. The biocompatibility of materials used in printed circuit board technologies with respect to primary neuronal and K562 cells. Biomaterials 2010, 31, 1045–1054, doi:10.1016/j.biomaterials.2009.10.025.
[2]  Feili, D.; Schuettler, M.; Doerge, T.; Kammer, S.; Stieglitz, T. Encapsulation of organic field effect transistors for flexible biomedical microimplants. Sensors Actuators A Phys. 2005, 120, 101–109, doi:10.1016/j.sna.2004.11.021.
[3]  Makamba, H.; Kim, J.H.; Lim, K.; Park, N.; Hahn, J.H. Surface modification of poly (dimethylsiloxane) microchannels. Electrophoresis 2003, 24, 3607–3619, doi:10.1002/elps.200305627.
[4]  Sung, W.C.; Chang, C.C.; Makamba, H.; Chen, S.H. Long-term affinity modification on poly (dimethylsiloxane) substrate and its application for ELISA analysis. Anal. Chem. 2008, 80, 1529–1535, doi:10.1021/ac7020618.
[5]  Walther, M.; Heming, M.; Spallek, M. Multilayer barrier coating system produced by plasma-impulse chemical vapor deposition (PICVD). Surf. Coatings Technol. 1996, 80, 200–202, doi:10.1016/0257-8972(95)02711-4.
[6]  Senturia, S.D. Microsystem Design; Springer Science + Business Media, LLC: New York, NY, USA, 2005.
[7]  Hedenqvist, M.S.; Johansson, K.S. Barrier properties of SiOx-coated polymers: Multi-layer modelling and effects of mechanical folding. Surf. Coatings Technol. 2003, 172, 7–12, doi:10.1016/S0257-8972(03)00312-8.
[8]  Kim, S.R.; Choudhury, M.H.; Kim, W.H.; Kim, G.H. Effects of argon and oxygen flow rate on water vapor barrier properties of silicon oxide coatings deposited on polyethylene terephthalate by plasma enhanced chemical vapor deposition. Thin Solid Films 2010, 518, 1929–1934, doi:10.1016/j.tsf.2009.07.147.
[9]  Rochat, G.; Leterrier, Y.; Garamszegi, L.; M?nson, J.A.; Fayet, P. Durability of hybrid PECVD-based coatings on semicrystalline polymers. Surf. Coatings Technol. 2003, 174, 1029–1032.
[10]  Iwamori, S.; Kita, T.; Saitoh, S.; Yano, S.; Kaminoda, K.; Ohnishi, S.; Suzuki, K. Adhesion and vacuum forming properties of tin–zinc thin films deposited on polyester film substrate. Vacuum 2009, 84, 581–586, doi:10.1016/j.vacuum.2009.06.054.
[11]  Shim, J.; Yoon, H.G.; Na, S.H.; Kim, I.; Kwak, S. Silicon oxynitride gas barrier coatings on poly (ether sulfone) by plasma-enhanced chemical vapor deposition. Surf. Coatings Technol. 2008, 202, 2844–2849, doi:10.1016/j.surfcoat.2007.10.020.
[12]  Henry, B.M.; Erlat, A.G.; McGuigan, A.; Grovenor, C.R.M.; Briggs, G.A.D.; Tsukahara, Y.; Niijima, T. Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates. Thin Solid Films 2001, 382, 194–201, doi:10.1016/S0040-6090(00)01769-7.
[13]  Charton, C.; Schiller, N.; Fahland, M.; Holl?nder, A.; Wedel, A.; Noller, K. Development of high barrier films on flexible polymer substrates. Thin Solid Films 2006, 502, 99–103, doi:10.1016/j.tsf.2005.07.253.
[14]  Erlat, A.G.; Henry, B.M.; Ingram, J.J.; Mountain, D.B.; McGuigan, A.; Howson, R.P.; Tsukahara, Y. Characterisation of aluminium oxynitride gas barrier films. Thin Solid Films 2001, 388, 78–86, doi:10.1016/S0040-6090(01)00836-7.
[15]  Chiang, C.C.; Wuu, D.S.; Lin, H.B.; Chen, Y.P.; Chen, T.N.; Lin, Y.C.; Horng, R.H. Deposition and permeation properties of SiNx/parylene multilayers on polymeric substrates. Surf. Coatings Technol. 2006, 200, 5843–5848, doi:10.1016/j.surfcoat.2005.08.133.
[16]  Kim, N.; Potscavage, W.J.; Domercq, B.; Kippelen, B.; Graham, S. A hybrid encapsulation method for organic electronics. Appl. Phys. Lett. 2009, 94, 163308:1–163308:3.
[17]  Hogg, A.; Keppner, H.; Aellen, T.; Burger, J. Ultra-Thin Multi-Layer Protection. US Patent 2011/0039050 A1, 17 February 2011.
[18]  Hoivik, N.D.; Elam, J.W.; Linderman, R.J.; Bright, V.M.; George, S.M.; Lee, Y.C. Atomic layer deposited protective coatings for micro-electromechanical systems. Sensors Actuators APhys. 2003, 103, 100–108, doi:10.1016/S0924-4247(02)00319-9.
[19]  Lackner, J.M.; Waldhauser, W. Diamond and diamond-like carbon coated surfaces as biomaterials. BHM 2010, 155, 528–533.
[20]  Butter, R.; Allen, M.; Chandra, L.; Lettington, A.H.; Rushton, N. In vitro studies of DLC coatings with silicon intermediate layer. Diamond Relat. Mater. 1995, 4, 857–861, doi:10.1016/0925-9635(94)05280-8.
[21]  Linder, S.; Pinkowski, W.; Aepfelbacher, M. Adhesion, cytoskeletal architecture and activation status of primary human macrophages on a diamond-like carbon coated surface. Biomaterials 2002, 23, 767–773, doi:10.1016/S0142-9612(01)00182-X.
[22]  Mitura, E.; Mitura, S.; Niedzielski, P.; Has, Z.; Wolowiec, R.; Jakubowski, A.; Koczy, B. Diamond-like carbon coatings for biomedical applications. Diamond Relat. Mater. 1994, 3, 896–898, doi:10.1016/0925-9635(94)90295-X.
[23]  Allen, M.; Myer, B.; Rushton, N. In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications. J. Biomed. Mater. Res. 2001, 58, 319–328, doi:10.1002/1097-4636(2001)58:3<319::AID-JBM1024>3.0.CO;2-F.
[24]  Saito, T.; Hasebe, T.; Yohena, S.; Matsuoka, Y.; Kamijo, A.; Takahashi, K.; Suzuki, T. Antithrombogenicity of fluorinated diamond-like carbon films. Diamond Relat. Mater. 2005, 14, 1116–1119, doi:10.1016/j.diamond.2004.09.017.
[25]  Yang, P.; Huang, N.; Leng, Y.X.; Yao, Z.Q.; Zhou, H.F.; Maitz, M.; Chu, P.K. Wettability and biocompatibility of nitrogen-doped hydrogenated amorphous carbon films: Effect of nitrogen. Nucl. Instrum. Methods Phys. Res. Sec. B Beam Interact. Mater. Atoms 2006, 242, 22–25, doi:10.1016/j.nimb.2005.08.081.
[26]  Maitz, M.F.; Gago, R.; Abendroth, B.; Camero, M.; Caretti, I.; Kreissig, U. Hemocompatibility of low-friction boron–carbon–nitrogen containing coatings. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 77, 179–187.
[27]  Maguire, P.D.; McLaughlin, J.A.; Okpalugo, T.I.T.; Lemoine, P.; Papakonstantinou, P.; McAdams, E.T.; Abbas, G.A. Mechanical stability, corrosion performance and bioresponse of amorphous diamond-like carbon for medical stents and guidewires. Diamond Relat. Mater. 2005, 14, 1277–1288, doi:10.1016/j.diamond.2004.12.023.
[28]  Okpalugo, T.I.T.; Ogwu, A.A.; Maguire, P.D.; McLaughlin, J.A.D. Platelet adhesion on silicon modified hydrogenated amorphous carbon films. Biomaterials 2004, 25, 239–245, doi:10.1016/S0142-9612(03)00494-0.
[29]  Huang, N.; Yang, P.; Leng, Y.X.; Wang, J.; Sun, H.; Chen, J.Y.; Wan, G.J. Surface modification of biomaterials by plasma immersion ion implantation. Surf. Coatings Technol. 2004, 186, 218–226, doi:10.1016/j.surfcoat.2004.04.041.
[30]  ISO 527-1:2012: Plastics—Determination of tensile properties—Part 1: General principles; ISO (International Organization for Standardization): Geneva, Switzerland, 2012.
[31]  Lackner, J.M. Industrially-Scaled Hybrid Pulsed Laser Deposition at Room Temperature. Professorial Dissertation, Institute of Metallurgy and Materials Science, Polish Academy of Science, Kraków, Poland, 2005.
[32]  Necas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Centr. Eur. J. Phys. 2012, 10, 181–188, doi:10.2478/s11534-011-0096-2.
[33]  Teichert, C. Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. 2002, 365, 335–432, doi:10.1016/S0370-1573(02)00009-1.
[34]  Sinha, S.K.; Sirota, E.B.; Garoff, S.; Stanley, H.B. X-ray and neutron scattering from rough surfaces. Phys. Rev. B 1988, 38, 2297–2311, doi:10.1103/PhysRevB.38.2297.
[35]  Teichert, C.; Haas, A.; Wallner, G.M.; Lang, R.W. Nanometer Scale Characterization of Polymer Films by Atomic-Force Microscopy. In Macromolecular Symposia; Aust, N., Lederer, K., Eds.; WILEY-VCH Verlag GmbH: Weinheim, Germany, 2002; Volume 181, pp. 457–466.
[36]  Oliver, W.C.; Pharr, G.M. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583, doi:10.1557/JMR.1992.1564.
[37]  Li, X.; Diao, D.; Bhushan, B. Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Mater. 1997, 45, 4453–4461, doi:10.1016/S1359-6454(97)00143-2.
[38]  Li, X.; Bhushan, B. Measurement of fracture toughness of ultra-thin amorphous carbon films. Thin Solid Films 1998, 315, 214–221, doi:10.1016/S0040-6090(97)00788-8.
[39]  Tscherner, M.; Konrad, C.; Bizzarri, A.; Suppan, M.; Cajlakovic, M.; Ribitsch, V.; Stelzer, F. Opto-chemical method for ultra-low oxygen transmission rate measurement. In Proceedings of IEEE SENSORS 2009 Conference, Christchurch, New Zealand, 25–28 October 2009; pp. 1660–1665.
[40]  Rharbi, Y.; Yekta, A.; Winnik, M.A. A method for measuring oxygen diffusion and oxygen permeation in polymer films based on fluorescence quenching. Anal. Chem. 1999, 71, 5045–5053, doi:10.1021/ac990193c.
[41]  ISO 10993-1:2009 Biological Evaluation of Medical Devices. Part 1: Evaluation and Testing in the Risk Management Process; ISO (International Organization for Standardization): Geneva, Switzerland, 2009.
[42]  ISO 10993-12:2009 Biological Evaluation of Medical Devices. Part 12: Sample Preparation and Reference Materials; ISO (International Organization for Standardization): Geneva, Switzerland, 2009.
[43]  Jacobs, J.P.; Jones, C.M.; Baille, J.P. Characteristics of a human diploid cell designated MRC-5. Nature 1970, 227, 168–170, doi:10.1038/227168a0.
[44]  Earle, W.R.; Schilling, E.L.; Stark, T.H.; Straus, N.P.; Brown, M.F.; Shelton, E. Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells. J. Natl. Cancer Inst. 1943, 4, 122–137.
[45]  ANIS/AAMI/ISO 10993-5:2009 Biological Evaluation of Medical Devices. Part 5: Tests for in Vitro Cytotoxicity; ISO (International Organization for Standardization): Geneva, Switzerland, 2009.
[46]  Van Tienhoven, E.A.E.; Korbee, D.; Schipper, L.; Verharen, H.W.; De Jong, W.H. In vitro and in vivo (cyto) toxicity assays using PVC and LDPE as model materials. J. Biomed. Mater. Res. A 2006, 78, 175–182.
[47]  Biological Reactivity Test, in Vitro–Direct Contact Test. In USP 34-NF 29 The United States Pharmacopeia and National Formulary; Deutscher Apotheker Verlag: Stuttgart, Germany, 2011.
[48]  ISO 22196:2011, Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces; ISO (International Organization for Standardization): Geneva, Switzerland, 2011.
[49]  Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Electron Spectroscopy; Marcel Dekker: New York, NY, USA.
[50]  Parra, E.R.; Arang, P.J.A.; Palacio, V.J.B. XPS structure analysis of TiN/TiC bilayers produced by pulsed vacuum arc discharge analisis. Dyna 2010, 163, 64–77.
[51]  Robertson, J. Structural models of aC and aC:H. Diamond Relat. Mater. 1995, 4, 297–301, doi:10.1016/0925-9635(94)05264-6.
[52]  Lackner, J.M.; Waldhauser, W.; Ebner, R.; Lenz, W.; Suess, C.; Jakopic, G.; Hutter, H. Pulsed laser deposition: A new technique for deposition of amorphous SiOx thin films. Surf. Coatings Technol. 2003, 163, 300–305.
[53]  Lackner, J.M.; Waldhauser, W.; Major, L.; Teichert, C.; Hartmann, P. Tribology of bio-inspired nanowrinkled films on ultrasoft substrates. Comput. Struct. Biotechnol. J. 2013, 6, e201303002.
[54]  Lackner, J.; Waldhauser, W.; Alamanou, A.; Teichert, C.; Schmied, F.; Major, L.; Major, B. Mechanisms for self-assembling topography formation in low-temperature vacuum deposition of inorganic coatings on polymer surfaces. Bull. Polish Acad. Sci. 2010, 281–294.
[55]  Lackner, J.M.; Waldhauser, W.; Hartmann, P.; Miskovics, O.; Schmied, F.; Teichert, C.; Sch?berl, T. Self-assembling (nano-) wrinkling topography formation in low-temperature vacuum deposition on soft polymer surfaces. Thin Solid Films 2012, 520, 2833–2840, doi:10.1016/j.tsf.2011.10.149.
[56]  Lackner, J.M.; Waldhauser, W.; Major, R.; Major, L.; Hartmann, P. Biomimetics in thin film design—Wrinkling and fracture of pulsed laser deposited films in comparison to human skin. Surf. Coatings Technol. 2012, 215, 192–198.
[57]  Ohzono, T.; Shimomura, M. Geometry-dependent stripe rearrangement processes induced by strain on preordered microwrinkle patterns. Langmuir 2005, 21, 7230–7237, doi:10.1021/la0503449.
[58]  Lackner, J.M.; Waldhauser, W.; Sch?berl, T. Film growth phenomena in high-energetic room temperature pulsed laser deposition on polymer surfaces. Surf. Coatings Technol. 2006, 201, 4037–4039, doi:10.1016/j.surfcoat.2006.08.005.
[59]  Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 2000, 246, 1–11, doi:10.1016/S0043-1648(00)00488-9.
[60]  Leyland, A.; Matthews, A. Design criteria for wear-resistant nanostructured and glassy-metal coatings. Surf. Coatings Technol. 2004, 177, 317–324, doi:10.1016/j.surfcoat.2003.09.011.
[61]  Leterrier, Y. Durability of nanosized oxygen-barrier coatings on polymers. Prog. Mater. Sci. 2003, 48, 1–55, doi:10.1016/S0079-6425(02)00002-6.
[62]  Schrenk, W.J.; Alfrey, T. Some physical properties of multilayered films. Polymer Eng. Sci. 1969, 9, 393–399, doi:10.1002/pen.760090604.
[63]  Chatham, H. Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf. Coatings Technol. 1996, 78, 1–9, doi:10.1016/0257-8972(95)02420-4.
[64]  Felts, J.T.; Grubb, A.D. Commercial-scale application of plasma processing for polymeric substrates: From laboratory to production. J. Vac. Sci. Technol. A 1992, 10, 1675–1681, doi:10.1116/1.577768.
[65]  Burlakov, V.M.; Briggs, G.A.D.; Sutton, A.P.; Tsukahara, Y. Monte carlo simulation of growth of porous SiOx by vapor deposition. Phys. Rev. Lett. 2001, 86, 3052–3055, doi:10.1103/PhysRevLett.86.3052.
[66]  ISO 10993: Biological Evaluation of Medical Devices. Part 1–20; ISO (International Organization for Standardization): Geneva, Switzerland, 1997–2012.
[67]  EMEA/CHMP/BWP/452081/2007: Guideline on the Replacement of Rabbit Pyrogen Testing by an Alternative Test for Plasma Derived Medicinal Products; European Medicines Agency: London, UK, 2007.
[68]  Ronneberger, H.J. Comparison of the pyrogen tests in rabbits and with limulus lysate. Dev. Biol. Stand. 1976, 34, 27–36.
[69]  Ekwall, B. Overview of the final MEIC results: II. The in vitro–in vivo evaluation, including the selection of a practical battery of cell tests for prediction of acute lethal blood concentrations in humans. Toxicol. In Vitro 1999, 13, 665–673, doi:10.1016/S0887-2333(99)00061-2.
[70]  ASTM F813-07 Standard Practice for Direct Contact Cell Culture Evaluation of Materials for Medical Devices; ASTM International: West Conshohocken, PA, USA, 2012.
[71]  ANIS/AAMI/ISO 10993–5:2009: Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity; AAMI (Association for the Advancement of Medical Instrumentation): Arlington, VA, USA, 2009.
[72]  Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Boyd, M.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988, 48, 4827–4833.
[73]  Department of Health, Education, and Welfare Public Health Service; Food and Drug Administration. Bacterial Endotoxins/Pyrogens, Inspection Guides. Available online: http://www.fda.gov/ICECI/Inspections/InspectionGuides/InspectionTechnicalGuides/ucm072918.htm (access on 28 August 2013).
[74]  Halle, W.; Spielmann, H. Two procedures for the prediction of acute toxicity (LD50) from cytotoxicity data. ATLA. Altern. Lab. Animals 1992, 20, 40–49.
[75]  Report of the International Workshop on in Vitro Methods for Assessing Acute Systemic Toxicity. NIH Publication 01-4499; NIEHS (National Institute of Environmental Health Sciences): Research Triangle Park, NC, USA, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133