全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Computation  2013 

Effect of Isotopic Substitution on Elementary Processes in Dye-Sensitized Solar Cells: Deuterated Amino-Phenyl Acid Dyes on TiO2

DOI: 10.3390/computation1010001

Keywords: dye-sensitized solar cells, molecular dynamics, deuteration, isotopic substitution, electron injection, recombination, dye regeneration

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present the first computational study of the effects of isotopic substitution on the operation of dye-sensitized solar cells. Ab initio molecular dynamics is used to study the effect of deuteration on light absorption, dye adsorption dynamics, the averaged over vibrations driving force to injection (? G i) and regeneration (? G r), as well as on promotion of electron back-donation in dyes NK1 (2 E,4 E-2-cyano-5-(4-dimethylaminophenyl)penta-2,4-dienoic acid) and NK7 (2 E,4 E-2-cyano-5-(4-diphenylaminophenyl)penta-2,4-dienoic acid) adsorbed in monodentate molecular and bidentate bridging dissociative configurations on the anatase (101) surface of TiO 2. Deuteration causes a red shift of the absorption spectrum of the dye/TiO 2 complex by about 5% (dozens of nm), which can noticeably affect the overlap with the solar spectrum in real cells. The dynamics effect on the driving force to injection and recombination (the difference between the averaged <? G i,r> and ? G i,r equil at the equilibrium configuration) is strong, yet there is surprisingly little isotopic effect: the average driving force to injection <? G i> and to regeneration <? G r> changes by only about 10 meV upon deuteration. The nuclear dynamics enhance recombination to the dye ground state due to the approach of the electron-donating group to TiO 2, yet this effect is similar for deuterated and non-deuterated dyes. We conclude that the nuclear dynamics of the C-H(D) bonds, mostly affected by deuteration, might not be important for the operation of photoelectrochemical cells based on organic dyes. As the expectation value of the ground state energy is higher than its optimum geometry value (by up to 0.1 eV in the present case), nuclear motions will affect dye regeneration by recently proposed redox shuttle-dye combinations operating at low driving forces.

References

[1]  Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pattersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663, doi:10.1021/cr900356p.
[2]  Mora-Sero, I.; Bisquert, J. Breakthroughs in the development of semiconductor-sensitized solar cells. J. Phys. Chem. Lett. 2010, 1, 3046–3052, doi:10.1021/jz100863b.
[3]  Peter, L.M. The Gr?tzel cell: Where next? J. Phys. Chem. Lett. 2011, 2, 1861–1867, doi:10.1021/jz200668q.
[4]  Yella, A.; Lee, H.-W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.-G.; Yeh, C.-Y.; Zakeeruddin, S.M.; Gr?tzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634, doi:10.1126/science.1209688.
[5]  Yum, J.-H.; Baranoff, E.; Kessler, F.; Moehl, T.; Ahmad, S.; Bessho, T.; Marchioro, A.; Ghadiri, E.; Moser, J.-E.; Yi, C.; Nazeeruddin, Md.K.; Gr?tzel, M. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat. Commun. 2012, 3, 631:1–631:8.
[6]  Martsinovich, N.; Troisi, A. Theoretical studies of dye-sensitised solar cells: From electronic structure to elementary processes. Energy Environ. Sci. 2011, 4, 4473–4495, doi:10.1039/c1ee01906f.
[7]  Cong, J.; Yang, X.; Kloo, L.; Sun, L. Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy Environ. Sci. 2012, 5, 9180–9194, doi:10.1039/c2ee22095d.
[8]  Wang, M.; Gr?tzel, C.; Zakeeruddin, S.M.; Gr?tzel, M. Recent developments in redox electrolytes for dye-sensitized solar cells. Energy Environ. Sci. 2012, 5, 9394–9405, doi:10.1039/c2ee23081j.
[9]  Prezhdo, O.V.; Duncan, W.R.; Prezhdo, V.V. Photoinduced electron dynamics at semiconductor interfaces: A time-domain ab initio prospective. Progr. Surf. Sci. 2009, 84, 30–68, doi:10.1016/j.progsurf.2008.10.005.
[10]  Duncan, W.R.; Prezhdo, O.V. Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu. Rev. Phys. Chem. 2008, 58, 143–184, doi:10.1146/annurev.physchem.58.052306.144054.
[11]  Manzhos, S.; Segawa, H.; Yamashita, K. A model for recombination in Type II dye-sensitized solar cells: Catechol-thiophene dyes. Chem. Phys. Lett. 2011, 504, 230–235, doi:10.1016/j.cplett.2011.01.068.
[12]  Manzhos, S.; Segawa, H.; Yamashita, K. Derivative coupling constants of NK1, NK7 dyes and their relation to excited state dynamics in solar cell applications. Chem. Phys. Lett. 2011, 501, 580–586, doi:10.1016/j.cplett.2010.11.049.
[13]  Manzhos, S.; Fujisawa, J.; Segawa, H.; Yamashita, K. Isotopic substitution as a strategy to control non-adiabatic dynamics in photoelectrochemical cells: Surface complexes between TiO2 and dicyanomethylene compounds. Jpn. J. Appl. Phys. 2012, 51, 10NE03:1–10NE03:6.
[14]  Manzhos, S.; Jono, R.; Yamashita, K.; Fujisawa, J.; Nagata, M.; Segawa, H. A study of interfacial charge transfer bands and electron recombination in the surface complexes of TCNE, TCNQ, and TCNAQ with TiO2. J. Phys. Chem. C 2011, 115, 21487–21493.
[15]  Niu, Y.; Peng, Q.; Deng, C.; Gao, X.; Shuai, Z. Theory of excited state decays and optical apectra: Application to polyatomic molecules. J. Phys. Chem. A 2010, 114, 7817–7831.
[16]  Manzhos, S.; Segawa, H.; Yamashita, K. Computational dye design by changing the conjugation order: Failure of LR-TDDFT to predict relative excitation energies in organic dyes differing by the position of the methine unit. Chem. Phys. Lett. 2012, 527, 51–56, doi:10.1016/j.cplett.2011.12.079.
[17]  Manzhos, S.; Segawa, H.; Yamashita, K. Effect of nuclear vibrations, temperature, co-adsorbed water, and dye orientation on light absorption, charge injection and recombination conditions in organic dyes on TiO2. Phys. Chem. Chem. Phys. 2013, 15, 1141–1147, doi:10.1039/c2cp43448b.
[18]  Manzhos, S.; Segawa, H.; Yamashita, K. The effect of ligand substitution and water co-adsorption on the adsorption dynamics and energy level matching of amino-phenyl acid dyes on TiO2. Phys. Chem. Chem. Phys. 2012, 14, 1749–1755, doi:10.1039/c2cp23039a.
[19]  Manzhos, S.; Segawa, H.; Yamashita, K. Effect of nuclear vibrations, temperature, and orientation on injection and recombination conditions in amino-phenyl acid dyes on TiO2. Proc. SPIE 2012, 8438, 843814:1–843814:10.
[20]  Lim, K.; Kim, C.; Song, J.; Yu, T.; Lim, W.; Song, K.; Wang, P.; Zu, N.; Ko, J. Enhancing the performance of organic dye-sensitized solar cells via a slight structure modification. J. Phys. Chem. C 2011, 115, 22640–22646.
[21]  Zhang, M.-D.; Pan, H.; Ju, X.-H.; Ji, Y.-J.; Qin, L.; Zheng, H.-G.; Zhou, X.-F. Improvement of dye-sensitized solar cells' performance through introducing suitable heterocyclic groups to triarylamine dyes. Phys. Chem. Chem. Phys. 2012, 14, 2809–2815.
[22]  Myllyperkio, P.; Manzoni, C.; Polli, D.; Cerullo, G.; Korppi-Tommola, J. Electron transfer from organic aminophenyl acid sensitizers to titanium dioxide nanoparticle films. J. Phys. Chem. C 2009, 113, 13985–13992.
[23]  Han, L.; Islam, A.; Chen, H.; Malapaka, C.; Chiranjeevi, B.; Zhang, S.; Yang, X.; Yanagida, M. High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ. Sci. 2012, 5, 6057–6060, doi:10.1039/c2ee03418b.
[24]  Long, H.; Zhou, D.; Zhang, M.; Peng, C.; Uchida, S.; Wang, P. Probing dye-correlated interplay of energetics and kinetics in mesoscopic titania solar cells with 4-tert-butylpyridine. J. Phys. Chem. C 2011, 115, 14408–14414.
[25]  Ren, X.; Feng, Q.; Zhou, G.; Huang, C.-H.; Wang, Z.-S. Effect of cations in coadsorbate on charge recombination and conduction band edge movement in dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 7190–7195.
[26]  Asuduzzaman, A.M.; Schreckenbach, G. Computational studies on the interactions among redox couples, additives and TiO2: Implications for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2010, 12, 14609–14618.
[27]  Shizu, K.; Sato, T.; Tanaka, K. Vibronic coupling density analysis for α-oligothiophene cations: A new insight for polaronic defects. Chem. Phys. 2010, 369, 108–121, doi:10.1016/j.chemphys.2010.03.014.
[28]  Abe, T.; Miyazawa, A.; Konno, H.; Kawanishi, Y. Deuteration isotope effect on nonradiative transition of fac-tris (2-phenylpyridinato) iridium (III) complexes. Chem. Phys. Lett. 2010, 491, 199–202.
[29]  Tong, C.C.; Hwang, K.C. Enhancement of OLED efficiencies and high-voltage stabilities of light-emitting materials by deuteration. J. Phys. Chem. C 2007, 111, 3490–3494, doi:10.1021/jp066116k.
[30]  Browne, W.R.; Passaniti, P.; Gandolfi, M.T.; Ballardini, R.; Henry, W.; Guckian, A.; O'Boyle, N.; McGarvey, J.J.; Vos, J.G. Probing inter-ligand excited state interaction in homo and heteroleptic ruthenium(II) polypyridyl complexes using selective deuteriation. Inorg. Chim. Acta 2007, 360, 1183–1190, doi:10.1016/j.ica.2006.08.049.
[31]  Browne, W.R.; Vos, J.G. The effect of deuteriation on the emission lifetime of inorganic compounds. Coord. Chem. Rev. 2001, 219–221, 761–787.
[32]  Keyes, T.E.; O’Connor, C.M.; O’Dwyer, U.; Coates, C.G.; Callaghan, P.; McGarvey, J.J.; Vos, J.G. Isotope and temperature dependence of dual emission in a mononuclear ruthenium(II) polypyridyl compound. J. Phys. Chem. A 1999, 103, 8915–8920.
[33]  Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913:1–913:3.
[34]  Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138, doi:10.1103/PhysRev.140.A1133.
[35]  Soler, J.M.; Artacho, E.; Dale, J.D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter. 2002, 14, 2745–2779.
[36]  Perdew, J.P.; Burke, K.; Ernzerhoff, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868, doi:10.1103/PhysRevLett.77.3865.
[37]  Artacho, E.; Anglada, E.; Dieguez, O.; Gale, J.D.; Garcia, A.; Junquera, J.; Martin, R.M.; Ordejon, P.; Pruneda, J.M.; Sanchez-Portal, D.; Soler, J.M. The SIESTA method: Developments and applicability. J. Phys.: Condens. Matter. 2008, 20, 064208:1–064208:6.
[38]  Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006, doi:10.1103/PhysRevB.43.1993.
[39]  Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 2001, 63, 155409:1–155409:9.
[40]  Perron, H.; Domain, C.; Roques, J.; Drot, R.; Simoni, E.; Catalette, H. Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations. Theor. Chem. Acc. 2007, 117, 565–574, doi:10.1007/s00214-006-0189-y.
[41]  Xiao, D.; Martini, L.A.; Snoeberger, R.C., III; Crabtree, R.H.; Batista, V.S. Inverse design and synthesis of acac-Coumarin anchors for robust TiO2 sensitization. J. Am. Chem. Soc. 2011, 133, 9014–9022.
[42]  Pastore, M.; de Angelis, F. Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: An ab initio investigation. ACS Nano 2010, 4, 556–562.
[43]  De Angelis, F. Direct vs. indirect injection mechanisms in perylene dye-sensitized solar cells: A DFT/TDDFT investigation. Chem. Phys. Lett. 2010, 493, 323–327, doi:10.1016/j.cplett.2010.05.064.
[44]  De Angelis, F.; Tilocca, A.; Selloni, A. Time-Dependent DFT study of [Fe(CN)6]4- sensitization of TiO2 nanoparticles. J. Am. Chem. Soc. 2004, 126, 15024–15025, doi:10.1021/ja045152z.
[45]  Li, Z.; Zhang, X.; Lu, G. Electron dynamics in dye-sensitized solar cells: Effects of surface terminations and defects. J. Phys. Chem. B 2010, 114, 17077–17083.
[46]  Duncan, W.R.; Prezhdo, O.V. Temperature independence of the photoinduced electron injection in dye-sensitized TiO2 rationalized by ab initio time-domain density functional theory. J. Am. Chem. Soc. 2008, 130, 9756–9762, doi:10.1021/ja800268x.
[47]  Mosconi, E.; Yum, J.-H.; Kessler, F.; Gomez Garcia, C.J.; Zuccaccia, C.; Cinti, A.; Nazeeruddin, Md.K.; Gr?tzel, M.; de Angelis, F. Cobalt eectrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study. J. Am. Chem. Soc. 2012, 134, 19438–19453, doi:10.1021/ja3079016.
[48]  Daeneke, T.; Mozer, A.J.; Uemura, Y.; Makuta, S.; Fekete, M.; Tachibana, Y.; Koumura, N.; Bach, U.; Spicca, L. Dye regeneration kinetics in dye-sensitized solar cells. J. Am. Chem. Soc. 2012, 134, 16925–16928, doi:10.1021/ja3054578.
[49]  Ahmad, S.; Bessho, T.; Kessler, F.; Baranoff, E.; Frey, J.; Yi, C.; Gr?tzel, M.; Nazeeruddin, Md.K. A new generation of platinum and iodine free efficient dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012, 14, 10631–10639.
[50]  Dos Santos, T.; Morandeira, A.; Koops, S.; Mozer, A.J.; Tsekouras, G.; Dong, Y.; Wagner, P.; Wallace, G.; Earles, J.C.; Gordon, K.C.; Officer, D.; Durrant, J.R. Injection limitations in a series of porphyrin dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 3276–3279, doi:10.1021/jp908401k.
[51]  Koops, S.E.; O’Regan, B.C.; Barnes, P.R.F.; Durrant, J.R. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 4808–4818.
[52]  Haque, S.A.; Handa, S.; Peter, K.; Palomares, E.; Thelakkat, M.; Durrant, J.R. Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: Towards a quantitative structure-function relationship. Angew. Chem. Int. Ed. 2005, 44, 5740–5744.
[53]  Clifford, J.N.; Palomares, E.; Nazeeruddin, Md.K.; Gr?tzel, M.; Nelson, J.; Li, X.; Long, N.J.; Durrant, J.R. Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: Free energy vs. distance dependence. J. Am. Chem. Soc. 2004, 126, 5225–5233, doi:10.1021/ja039924n.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133