全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2013 

High Birefringence Liquid Crystals

DOI: 10.3390/cryst3030443

Keywords: liquid crystal, cyanide, fluoride, isothiocyanate, biphenyl, tolane, terphenyl, quaterphenyl, high birefringence, positive dielectric anisotropy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Liquid crystals, compounds and mixtures with positive dielectric anisotropies are reviewed. The mesogenic properties and physical chemical properties (viscosity, birefringence, refractive indices, dielectric anisotropy and elastic constants) of compounds being cyano, fluoro, isothiocyanato derivatives of biphenyl, terphenyl, quaterphenyl, tolane, phenyl tolane, phenyl ethynyl tolane, and biphenyl tolane are compared. The question of how to obtain liquid crystal with a broad range of nematic phases is discussed in detail. Influence of lateral substituent of different kinds of mesogenic and physicochemical properties is presented (demonstrated). Examples of mixtures with birefringence ?n in the range of 0.2–0.5 are given.

References

[1]  Kirsch, P.; Bremer, M. Nematic liquid crystals for active matrix displays: Molecular design and synthesis. Angew. Chem. Int. Ed. 2000, 39, 4216–4235, doi:10.1002/1521-3773(20001201)39:23<4216::AID-ANIE4216>3.0.CO;2-K.
[2]  Iwashita, Y.; Kaneoya, M.; Takeuchi, K.; Takehara, S.; Takatsu, H. Physical property of new liquid crystal materials and mixture design for active matrix LCD. Mol. Cryst. Liq. Cryst. 2001, 364, 851–858, doi:10.1080/10587250108025057.
[3]  Pauluth, D.; Tarumi, K. Advanced liquid crystals for television. J. Mater. Chem. 2004, 14, 1219–1227, doi:10.1039/b400135b.
[4]  Breddels, P.A. Trends and advances in developments of liquid crystal mixtures for TFT LCDs. In Proceedings of the 12th International Topical Meeting on Optics of Liquid Crystals (OLC'07), Puebla City, Mexico, 1–5 October 2007; pp. 17–20.
[5]  Demus, D.; Goto, Y.; Sawada, S.; Nakagawa, E.; Saito, H.; Tarao, R. Trifluorinated liquid crystals for TFT displays. Mol. Cryst. Liq. Cryst. 1995, 260, 1–22, doi:10.1080/10587259508038680.
[6]  Kirch, P. Applications of Organofluorine Compounds. In Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Willey-VCH Verlag GmbH: Weinhaim, Germany, 2004; pp. 213–225.
[7]  Schadt, M. Linear and non-linear liquid crystal materials, electro-optical effects and surface interactions. Their application in present and future devices. Liq. Cryst. 1993, 14, 73–104, doi:10.1080/02678299308027305.
[8]  Kelun, S.M.; Yi-Hsuan, L.C.; Jer-Lin, C.F.; Mark, V. Liquid crystalline medium and liquid crystal display. WO 2,009,115,226 A1, 24 September 2009.
[9]  Nishiyama, K.; Okita, M.; Kawaguchi, S.; Teranishi, K.; Takamatsu, R. 32′′ WXGA LCD TV using OCB mode, low temperature p-Si TFT and Blinking Backlight Technology. SID Int. Symp. Dig. Tech. 2005, 36, 132–135, doi:10.1889/1.2036250.
[10]  Harbers, G.; Hoelen, C. High performance LCD backlight using high intensity red, green and blue light emitting diodes. SID Int. Symp. Dig. Tech. 2001, 32, 702–705, doi:10.1889/1.1831960.
[11]  Gauza, S.; Zhu, X.; Piecek, W.; D?browski, R.; Wu, S.T. Fast switching liquid crystals for color-sequential LCDs. J. Display Technol. 2007, 3, 250–252, doi:10.1109/JDT.2007.900909.
[12]  Kikuchi, H.; Higuchi, H.; Haseba, Y.; Iwata, T. Fast electro-optical switching in polymer-stabilized liquid crystalline blue phases for display application. SID Int. Symp. Dig. Tech. 2007, 38, 1737–1740, doi:10.1889/1.2785662.
[13]  Rao, L.; Ge, Z.; Wu, S.T.; Lee, S.H. Low voltage blue-phase liquid crystal displays. Appl. Phys. Lett. 2009, 95, 231101:1–231101:3.
[14]  Yan, J.; Rao, L.; Jiao, M.; Li, Y.; Cheng, H.H.; Wu, S.T. Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications. J. Mater. Chem. 2011, 21, 7870–7877.
[15]  Wang, C.T.; Wang, W.Y.; Lin, T.H. A stable and switchable uniform lying helix structure in cholesteric liquid crystals. Appl. Phys. Lett. 2011, 99, 041108:1–041108:3.
[16]  Wu, S.T.; Margerum, J.D.; Meng, H.B.; Hsu, C.S.; Dalton, L.R. Potential liquid crystal mixtures for CO2 laser application. Appl. Phys. Lett. 1994, 64, 1204–1206, doi:10.1063/1.110890.
[17]  Wu, S.T. Infrared properties of liquid crystals: An overview. Opt. Eng. 1987, 26, 120–128.
[18]  Nie, X.Y.; Wu, T.X.; Lu, Y.Q.; Wu, Y.H.; Liang, X.; Wu, S.T. Dual-frequency addressed infrared liquid crystal phase modulators with submillisecond response time. Mol. Cryst. Liq. Cryst. 2006, 454, 123–133.
[19]  Kleine-Ostmann, T.; Nagatsuma, T. A review on Terahertz communications research. J. Infrared Millim. Terahertz Waves 2011, 32, 143–171, doi:10.1007/s10762-010-9758-1.
[20]  Palffy-Muhoray, P.; Cao, W.; Moreira, M.; Taheri, B.; Munoz, A. Photonics and lasing in liquid crystal materials. Philos. Trans. R. Soc. A 2006, 364, 2747–2761, doi:10.1098/rsta.2006.1851.
[21]  Coles, H.; Morris, S. Liquid-crystal lasers. Nat. Photonics 2012, 4, 676–684, doi:10.1038/nphoton.2010.184.
[22]  Urbas, A.M.; Brown, D.P. Liquid crystals in metamaterials. In Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications; Li, O., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 379–402.
[23]  Khoo, I.C.; Werner, D.H.; Liang, X.; Diaz, A.; Weiner, B. Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes. Opt. Lett. 2006, 31, 2592–2594, doi:10.1364/OL.31.002592.
[24]  Pratibha, R.; Park, K.; Smalyukh, I.I.; Park, W. Tunable optical metamaterial based on liquid crystal-gold nanosphere composite. Opt. Express 2009, 17, 19459–19469, doi:10.1364/OE.17.019459.
[25]  Lavrentovich, O.D. Liquid crystals, photonic crystals, metamaterials, and transformation optics. Proc. Natl. Acad. Sci. USA 2011, 108, 5143–5144, doi:10.1073/pnas.1102130108.
[26]  Jesacher, A.; Maurer, C.; Schwaighofer, A.; Bernet, S.; Ritsch-Marte, M. Near-perfect hologram reconstruction with a spatial light modulator. Opt. Express 2008, 16, 2597–2603, doi:10.1364/OE.16.002597.
[27]  Curatu, G.; Harvey, J.E. Analysis and design of wide-angle foveated optical systems based on transmissive liquid-crystal spatial light modulators. Opt. Eng 2009, 48, doi:10.1117/1.3122006.
[28]  Scherger, B.; Reuter, M.; Scheller, M.; Altmann, K.; Vieweg, N.; Dabrowski, R.; Deibel, J.A.; Koch, M. Discrete Terahertz beam steering with an electrically controlled liquid crystal device. J. Infrared Millim. Terahertz Waves 2012, 33, 1117–1122, doi:10.1007/s10762-012-9927-5.
[29]  Khan, S.A.; Riza, N.A. Demonstration of 3-dimensional wide angle laser beam scanner using liquid-crystals. Opt. Express 2004, 12, 868–882, doi:10.1364/OPEX.12.000868.
[30]  Kim, J.; Oh, C.; Escuti, M.J.; Hosting, L.; Serati, S. Wide-angle, nonmechanical beam steering using thin liquid crystal polarization gratings. Adv. Wavefront Control Methods Devices Appl. VI 2008, doi:10.1117/12.795752.
[31]  Grudniewski, T.; Parka, J.; D?browski, R.; Stolarz, Z.; Miniewicz, A. Photorefractive effects in pure multicomponent isothiocyanate liquid crystals under low power illumination. Mol. Cryst. Liq. Cryst. 2004, 413, 443–450, doi:10.1080/15421400490439086.
[32]  Miniewicz, A.; Gniewek, A.; Parka, J. Liquid crystals photonic applications. Opt. Mater. 2003, 21, 605–610, doi:10.1016/S0925-3467(02)00209-4.
[33]  Wilk, R.; Vieweg, N.; Kopschinski, O.; Koch, M. Liquid crystal based electrically switchable Bragg structure for THz waves. Opt. Express 2009, 17, 7377–7382, doi:10.1364/OE.17.007377.
[34]  Dubois, F.; Krasinski, F.; Splingart, B.; Tentillier, N.; Legrand, Ch.; Spad?o, A.; Dabrowski, R. Large microwave birefringence liquid-crystal characterization for phase shifter applications. Jpn. J. Appl. Phys. 2008, 47, 3564–3567.
[35]  Wu, H.Y.; Hsieh, C.F.; Tang, T.T.; Pan, R.P.; Pan, C.L. Electrically tunable room-temperature liquid crystal terahertz phase shifter. IEEE Photonic Technol. L. 2006, 18, 1488–1490, doi:10.1109/LPT.2006.877579.
[36]  Garbovskiy, Y.; Zagorodnii, V.; Krivosik, P.; Lovejoy, J.; Camley, R.E.; Celinski, Z.; Glushchenko, A.; Dziaduszek, J.; D?browski, R. Liquid crystal phase shifters at millimeter wave frequencies. J. Appl. Phys. 2012, 111, 054504:1–054504:4.
[37]  Raszewski, Z.; Kruszelnicki-Nowinowski, E.; K?dzierski, J.; Perkowski, P.; Piecek, W.; D?browski, R.; Morawiak, P.; Ogrodnik, K. Electrically tunable liquid crystal filters. Mol. Cryst. Liq. Cryst. 2010, 525, 125–140.
[38]  Pan, C.L.; Pan, R.P. Recent progress in liquid crystal THz optics. Liq. Cryst. Mater. Devices Appl. XI 2006, 6135, doi:10.1117/12.644527.
[39]  Vieweg, N.; Born, N.; Al-Naib, I.; Koch, M. Electrically tunable terahertz notch filters. J. Infrared Millim. Terahertz Waves. 2012, 33, 327–332, doi:10.1007/s10762-012-9877-y.
[40]  Urruchi, V.; Marcos, C.; Torrecilla, J.; Sánchez-Pena, J.M.; Garbat, K. Note: Tunable notch filter based on liquid crystal technology for microwave applications. Rev. Sci. Instrum. 2013, 84, doi:10.1063/1.4790555.
[41]  Chang, C.M.A.; Cheng, C.C.; Yeh, J.A. Analysis and modeling of liquid-crystal tunable capacitors. IEEE Trans. Electron Dev. 2006, 53, 1675–1682, doi:10.1109/TED.2006.875818.
[42]  Bildik, S.; Dieter, S.; Fritzsch, C.; Frei, M.; Fischer, C.; Menzel, W.; Jakoby, R. Reconfigurable liquid crystal reflectarray with extended tunable phase range. In Proceedings of the 8th European Radar Conference, Manchester, NH, USA, 14 October 2011; pp. 404–407.
[43]  Pishnyak, O.; Sato, S.; Lavrentovich, O.D. Electrically tunable lens based on a dual-frequency nematic liquid crystal. Appl. Optics 2006, 45, 4576–4582, doi:10.1364/AO.45.004576.
[44]  Valley, P.; Mathine, D.L.; Dodge, R.M.; Schwiegerling, J.; Peyman, G.; Peyghambarian, N. Tunable-focus flat liquid-crystal diffractive lens. Opt. Lett. 2010, 35, 336–338, doi:10.1364/OL.35.000336.
[45]  Wolinski, T.R.; Ertman, S.; Lesiak, P.; Domański, A.W.; Czapla, A.; D?browski, R.; Nowinowski-Kruszelnicki, E.; Wójcik, J. Photonic liquid crystal fibers—A new challenge for fiber optics and liquid crystals photonics. Opto-Electron. Rev. 2006, 14, 329–334, doi:10.2478/s11772-006-0045-6.
[46]  O’Neill, M.; Kelly, S.M. Ordered materials for organic electronic and photonics. Adv. Mater. 2011, 23, 566–584, doi:10.1002/adma.201002884.
[47]  Beeckman, J.; Neyts, K.; Vanbrabant, P.J.M. Liquid-crystal photonic applications. Opt. Eng. 2011, 50, doi:10.1117/1.3565046.
[48]  Seed, A.J.; Cross, G.J.; Toyne, K.J.; Goodby, J.W. Novel, highly polarizable thiophene derivatives for use in nonlinear optical applications. Liq. Cryst. 2003, 30, 1089–1107, doi:10.1080/0267829031000154363.
[49]  Gauza, S.; Wang, H.; Wen, C.H.; Wu, S.T.; Seed, A.; Dabrowski, R. High birefringence isothiocyanato tolane liquid crystals. Jpn. J. Appl. Phys. 2003, 42, 3463–3466, doi:10.1143/JJAP.42.3463.
[50]  Gauza, S.; Wen, C.-H.; Zhao, Y.; Wu, S.T.; Zió?ek, A.; Dabrowski, R. Isothiocyanato-tolanes based high birefringence and fast response time mixtures for photonic applications. Mol. Cryst. Liq. Cryst. 2006, 453, 215–226, doi:10.1080/15421400600653993.
[51]  Dabrowski, R.; Dziaduszek, J.; Zió?ek, A.; Szczuciński, ?.; Stolarz, Z.; Sasnouski, G.; Bezborodov, V.; Lapanik, W.; Gauza, S.; Wu, S.T. Low viscosity, high birefringence liquid crystalline compounds and mixtures. Opto-Electron. Rev. 2007, 15, 47–51, doi:10.2478/s11772-006-0055-4.
[52]  Nowinowski-Kruszelnicki, E.; K?dzierski, J.; Raszewski, Z.; Jaroszewicz, L.; D?browski, R.; Kojdecki, M.; Piecek, W.; Perkowski, P.; Garbat, K.; Olifierczuk, M.; et al. High birefringence liquid crystal mixtures for electro-optical devices. Opt. Appl. 2012, 42, 167–180.
[53]  D?browski, R.; Wa?yska, B.; Sosnowska, B. Creation of a nematic phase in mixtures of smectic A1 phases. Liq. Cryst. 1986, 1, 415–428, doi:10.1080/02678298608086266.
[54]  Dabrowski, R.; Szulc, J. Binary systems of smectics A with enhanced nematic phase. J. Phys. 1984, 45, 1213–1222, doi:10.1051/jphys:019840045070121300.
[55]  D?browski, R.; Czupryński, K. Nematic phases created in binary mixtures of smectics A. Mol. Cryst. Liq. Cryst. 1987, 146, 341–366, doi:10.1080/00268948708071823.
[56]  Czupryński, K.; D?browski, R.; Przedmojski, J. Effect of properties of the smectic Ad phase on the induction of a nematic phase in binary mixtures of smectics A1 and Ad. Liq. Cryst. 1989, 4, 429–433, doi:10.1080/02678298908035489.
[57]  Czupryński, K.; D?browski, R.; Baran, J.; ?ywociński, A.; Przedmojski, J. A nematic gap in mixtures of smectics A1 and Ad. J. Phys. 1986, 47, 1577–1585, doi:10.1051/jphys:019860047090157700.
[58]  Domon, M.; Billard, J. écarts a l'idéalité de solutions smectiques binaries. J. Phys. Colloques 1979, 40, 413–418.
[59]  Sadowska, K.W.; ?ywocinski, A.; Stecki, J.; Dabrowski, R. Induced smectic phases. Densities of binary mixtures of 4,4′-dialkylazoxybenzenes with 4-pentyl-4′-cyanobiphenyl (PCB). J. Phys. 1982, 43, 1673–1678, doi:10.1051/jphys:0198200430110167300.
[60]  D?browski, R.; Czupryński, K. Chapter 8: Induced smectic and nematic phases and re-entrant phenomena. In Modern Topics in Liquid Crystals: From Neutron Scattering to Ferroelectricity; Buka, A., Ed.; World Scientific Pub. Co. Inc.: Singapore, 1993; pp. 125–160.
[61]  Demus, D.; Fietkau, Ch.; Schubert, R.; Kehlen, H. Calculation and experimental verification of eutectic systems with nematic phases. Mol. Cryst. Liq. Cryst. 1974, 25, 215–232, doi:10.1080/15421407408082802.
[62]  Atkins, P.W. Equilibrium. In Physical chemistry: Science of Biology, 6th ed. ed.; W.H. Freeman & Company: New York, NY, USA, 1997; pp. 620–652.
[63]  Xianyu, H.; Wu, S.-T.; Lin, C.L. Dual frequency liquid crystals: A review. Liq. Cryst. 2009, 36, 717–726, doi:10.1080/02678290902755598.
[64]  Wu, S.T.; Lackner, A.M.; Efron, U. Optimal operation temperature of liquid-crystal modulators. Appl. Optics 1987, 26, 3441–3445, doi:10.1364/AO.26.003441.
[65]  Smith, G.W. Phase behavior of some linear polyphenyls. Mol. Cryst. Liq. Cryst. 1979, 49, 207–209, doi:10.1080/00268947908070413.
[66]  Miyazawa, K.; Kato, T.; Itoh, M.; Ushioda, M. First synthesis of liquid crystalline 2,3-bis(trifluo-romethyl)phenyl derivatives exhibiting large negative dielectric anisotropy. Liq. Cryst. 2002, 29, 1483–1490, doi:10.1080/02678290260372682.
[67]  Leadbetter, A.J.; Richardson, R.M.; Colling, C.N. The structure of a number of nematogens. J. Phys. Colloq. 1975, 36, 37–43.
[68]  Longa, L.; Dejeu, W.H. Microscopic one-particle description of reentrant behavior in nematic liquid crystals. Phys. Rev. A 1982, 26, 1632–1647, doi:10.1103/PhysRevA.26.1632.
[69]  Jad?yn, J.; Swiergiel, J.; Plowas, I.; Dabrowski, R.; Sokolowska, U. Dipolar aggregation and the static dielectric permittivity of some liquid crystalline materials. Ind. Eng. Chem. Res. 2013, 52, 4109–4112.
[70]  Sarkar, P.; Mandal, P.; Paul, S.; Paul, R.; D?browski, R.; Czupryński, K. X-ray diffraction, optical birefringence, dielectric and phase transition properties of the long homologous series of nematogens 4-(trans-4′-n-alkylcyclohexyl)isothiocyanatobenzenes. Liq. Cryst. 2003, 30, 507–527, doi:10.1080/0267829031000091156.
[71]  Hird, M. Fluorinated liquid crystals—Properties and applications. Chem. Soc. Rev. 2007, 36, 2070–2095, doi:10.1039/b610738a.
[72]  Cross, G.J.; Seed, A.J.; Toyne, K.J.; Goodby, J.W.; Hird, M.; Artal, M.C. Synthesis, transition temperatures, and optical properties of compounds with simple phenyl units linked by double bond, triple bond, ester or propiolate linkages. J. Mater. Chem. 2000, 10, 1555–1563, doi:10.1039/b001164i.
[73]  Gray, G.W.; Harrison, K.J.; Nash, J.A. Stable, low melting nematogens of positive dielectric anisotropy for display devices. Abstr. Pap. Am. Chem. S 1973, 142–142.
[74]  Gray, G.W.; Harrison, K.J.; Nash, J.A. Recent developments concerning biphenyl mesogens and structurally related compounds. In Liquid Crystals; Chandrasekhar, S., Ed.; Wikipedia: Bangalore, India, 1973; pp. 381–396.
[75]  Urban, S.; Czupryński, K.; D?browski, R.; Gestblom, B.; Janik, J.; Kresse, H.; Schmalfuss, H. Dielectric studies of the the 4-n-alkyl-4′-isothiocyanatobiphenyl (NBT) homologous series (n=2–10) in the isotropic and E phases. Liq. Cryst. 2001, 28, 691–696, doi:10.1080/02678290010023343.
[76]  Raszewski, Z. Dielectric studies of binary liquid-crystalline mixtures. Liq. Cryst. 1988, 3, 307–322, doi:10.1080/02678298808086377.
[77]  D?browski, R.; ?ytyński, E. Mesomorphic properties of 4-n-pentylbiphenyl derivatives. Mol. Cryst. Liq. Cryst 1982, 87, 109–135, doi:10.1080/00268948208083777.
[78]  Zió?ek, A.; D?browski, R.; Spad?o, A.; Kula, P.; Kenig, K.; Gauza, S.; Wu, S.T.; Lapanik, V. Synthesis and mesomorphic properties of fluoro substituted isothiocyanatobiphenyls and isothiocyanatoterphenyls. In Proceedings of the 16th Conference on Liquid Crystals (ChemistryPhysics and Applications), Stare Jab?onki, Poland, 18 September 2005; pp. 71–76.
[79]  Schmidt, W.; V?gtle, F.; Poetsch, E. Spiro units as building blocks in thermotropic liquid crystals: Synthesis and physical properties of terminally substituted spiro[5.5]undecanes. Liebigs Ann 1995, 7, 1319–1326, doi:10.1002/jlac.1995199507175.
[80]  Schadt, M.; Buchecker, R.; Villiger, A.; Leenhouts, F.; Fromm, J. The cooperative effects of heterocycles, NCS-polar groups and double bonds on the material properties of new nematic liquid crystals. IEEE T. Electron. Dev. 1986, 33, 1187–1194, doi:10.1109/T-ED.1986.22640.
[81]  Schadt, M. Nematic liquid crystals and electro-optical effects: Display applications. Chimia 1987, 41, 347–357.
[82]  Boller, A.; Cereghetti, M.; Schadt, M.; Scherrer, H. Synthesis and some physical properties of phenylpyrimidines. Mol. Cryst. Liq. Cryst. 1977, 42, 215–231, doi:10.1080/15421407708084509.
[83]  D?browski, R.; Dziaduszek, J.; Szczuciński, T. Mesomorphic characteristics of some new homologous series with the isothiocyanato terminal group. Mol. Cryst. Liq. Cryst. 1985, 124, 241–257, doi:10.1080/00268948508079480.
[84]  Baran, J.W.; Raszewski, Z.; Dabrowski, R.; K?dzierski, J.; Rutkowska, J. Some physical properties of mesogenic 4-(trans-4′-n-alkylcyclohexyl)isothiocyanatobenzenes. Mol. Cryst. Liq. Cryst. 1985, 123, 237–245, doi:10.1080/00268948508074781.
[85]  Dabrowski, R.; Kula, P.; Herman, J. Synthesis of new high birefringence liquid crystals. Military University of Technology: Warsaw, Poland. Unpublished work, 2013.
[86]  Hird, M.; Seed, A.J.; Toyne, K.J.; Goodby, J.W.; Gray, G.W.; Mcdonnell, D.G. Synthesis, transition temperatures and optical anisotropy of some isothiocyanato-substituted biphenyls. J. Mater. Chem. 1993, 3, 851–859, doi:10.1039/jm9930300851.
[87]  Kedziora, P.; Jad?yn, J. Dipole dipole association of mesogenic molecules in solution. Liq. Cryst. 1990, 8, 445–450, doi:10.1080/02678299008047360.
[88]  Majewska, P.; Rospenk, M.; Czarnik-Matusewicz, B.; Kochel, A.; Sobczyk, L.; D?browski, R. X-ray diffraction, DFT theoretical and IR polarized spectroscopic studies of the crystal-like E-mesophase of 4′-hexyloxy-isothiocyanatotolane (6OTOLT). Chem. Phys. 2007, 340, 227–236, doi:10.1016/j.chemphys.2007.09.018.
[89]  Majewska, P.; Rospenk, M.; Petrus, R.; Sobczyk, L.; Czarnik-Matusewicz, B.; Dabrowski, R. Study of packing of 4′-butyl-4-isothiocyanatotolane by X-ray diffraction and infrared spectra in polarized light. Chem. Phys. Lett. 2012, 535, 56–62, doi:10.1016/j.cplett.2012.03.059.
[90]  Antos, K.; Martvon, A.; Krystian, P. Dipole moments and structure of isothiocyanates. Collect. Czech. Chem. Commun. 1966, 31, 3737–3743, doi:10.1135/cccc19663737.
[91]  Spad?o, A.; D?browski, R.; Filipowicz, M.; Stolarz, Z.; Przedmojski, J.; Gauza, S.; Fan, C.Y.; Wu, S.T. Synthesis, mesomorphic and optic properties of isothiocyanatotolanes. Liq. Cryst. 2003, 30, 191–198, doi:10.1080/0267829021000060197.
[92]  Spad?o, A.; D?browski, R.; Filipowicz, M.; Gauza, S.; Wu, S.T. Synthesis, mesomorphic and optical properties of 4′-alkyl-3,5-difluoro-4-isothiocyanatotolanes and 4′-alkylphenyl-3,5-difluoro-4-isothiocyanatotolanes. In Proceedings of the 16th Conference on Liquid Crystals (ChemistryPhysics and Applications), Stare Jab?onki, Poland, 18 September 2005; pp. 53–58.
[93]  Spad?o, A.; Drzewiński, J.; D?browski, R.; Filipowicz, M.; Stolarz, Z.; ?cibior, E.; K?dzierski, J.; Urban, S.; Gauza, S.; Wu, S.T. Synthesis and mesomorphic properties of fluoro- and chloro-substituted isothiocyanatotolanes. In Proceedings of the 15th Conference on Liquid Crystals, Zakopane, Poland, 1 September 2004; pp. 19–25.
[94]  Spad?o, A.; Dabrowski, R.; Dziaduszek, J.; Urban, S.; Scibior, E.; Gauza, S.; Wu, S.T. Liquid crystalline materials with high birefringence. J. Opt. Technol. 2005, 72, 659–661, doi:10.1364/JOT.72.000659.
[95]  Hsu, C.S.; Tsay, K.T.; Chang, A.C.; Wang, S.R.; Wu, S.T. Synthesis of fluorinated naphthylphenylacetylenic and naphthylphenyldiacetylenic liquid crystals. Liq. Cryst. 1995, 19, 409–414, doi:10.1080/02678299508032000.
[96]  Gray, G.W.; Mosley, A. Mesomorphic transition temperatures for the homologous series of 4-n-alkyl-4′-cyanotolanes and other related compounds. Mol. Cryst. Liq. Cryst. 1976, 37, 213–231, doi:10.1080/15421407608084357.
[97]  Urban, S.; Czub, J.; D?browski, R.; Kresse, H. Dielectric studies of tolane derivatives exhibiting the E and K phases. Liq. Cryst. 2005, 32, 119–124, doi:10.1080/02678290412331327956.
[98]  Adomenas, P.; Butkas, V.; Daugvila, J.; Dienyte, J.; Girdzunaite, D. Advances in Liquid Crystal Research and Applications; Bata, L., Ed.; Pergamon Press: Oxford, UK, 1979; pp. 1029–1038.
[99]  Grant, B.; Clecak, N.J.; Cox, J.R. Novel liquid crystalline materials: Synthesis and preliminary characterization of new 4,4′-disubstituted diphenyldiacetylene, tolane and stilbene derivatives. Mol. Cryst. Liq. Cryst. 1979, 51, 209–214, doi:10.1080/00268947908084707.
[100]  Czub, J.; Urban, S.; D?browski, R.; Gestblom, B. Dielectric properties of liquid crystalline isothiocyanato-tolane derivatives with fluorine atom at various lateral positions. Acta Phys. Pol. A 2005, 107, 947–958.
[101]  D?browski, R.; Dziaduszek, J.; Garbat, K.; Filipowicz, M.; Urban, S.; Gauza, S.; Sasnouski, G. Synthesis and mesogenic properties of three and four-ring compounds with a fluoroisothio-cyanatobiphenyl moiety. Liq. Cryst. 2010, 37, 1529–1537, doi:10.1080/02678292.2010.521983.
[102]  Szczucinski, ?.; D?browski, R.; Urban, S. Synthesis and mesogenic properties of fluorosubstituted isothiocyanatoterphenyls. Military University of Technology: Warsaw, Poland. Unpublished work, 2013.
[103]  Parish, A.; Gauza, S.; Wu, S.T.; Dziaduszek, J.; Dabrowski, R. New fluorinated terphenyl isothiocyanate liquid crystal single compounds and mixtures. Mol. Cryst. Liq. Cryst. 2008, 489, 22–39.
[104]  Aziz, N.; Kelly, S. Rod-shaped dopants for flexoelectric nematic mixtures. Liq. Cryst. 2009, 36, 503–520, doi:10.1080/02678290903031643.
[105]  Boller, A.; Cereghetti, M.; Scherrer, H. Synthesis and mesomorphic properties of diphenyl-pyrimidines and biphenylyl-pyrimidines. Z. Naturforsch B 1978, 33, 433–438.
[106]  Goulding, M.; Greenfield, S.; Parri, O.; Coates, D. Liquid crystals with a thiomethyl end group: Lateral fluoro substituted 4-(trans-4-(n-propyl)cyclohexylethyl-4′-thiomethylbiphenyls and 4-n-alkyl-4″-thiomethylterphenyls. Mol. Cryst. Liq. Cryst. A 1995, 265, 27–40, doi:10.1080/10587259508041675.
[107]  Goto, Y.; Ogawa, T.; Sawada, S.; Sugimori, S. Fluorinated liquid crystals for active matrix displays. Mol. Cryst. Liq. Cryst. 1991, 1–7.
[108]  Das, M.K.; Pramanik, A.; Das, B.; Szczuciński, ?.; D?browski, R. A comparative study of the mesomorphic properties of fluoro—Isothiocyanated and fluorinated terphenyl liquid crystals from birefringence, static dielectric permittivity, splay elastic constant and rotational viscosity measurements. J. Phys. D Appl. Phys. 2012, 45, doi:10.1088/0022-3727/45/41/415304.
[109]  Chojnowska, O.; D?browski, R. The influence of cyanocompound on liquid crystal blue phase range. Photonics Lett. Pol. 2012, 4, 81–83.
[110]  Gauza, S.; Parish, A.; Wu, S.T.; Spad?o, A.; D?browski, R. Physical properties of laterally fluorinated insothiocyanato phenyl-tolane liquid crystals. Liq. Cryst. 2008, 35, 483–488, doi:10.1080/02678290801956321.
[111]  Gauza, S.; Zhao, Y.; Le Cor, T.; Wu, S.T.; Zió?ek, A.; D?browski, R.; Catanescu, O.; Chien, L.C.; Hsu, C.S. High Figure-of-Merit laterally fluorinated biphenyltolane-isothiocyanates. Mol. Cryst. Liq. Cryst. 2007, 479, 169–179.
[112]  Kula, P.; Aptacy, A.; Herman, J.; Wójciak, W.; Urban, S. The synthesis and properties of fluoro-substituted analogues of 4-butyl-4′-[(4-butylphenyl)ethynyl]biphenyls. Liq. Cryst. 2013, 40, 482–491, doi:10.1080/02678292.2012.757813.
[113]  Chodorow, U.; Parka, J.; Kula, P.; Herman, J.; Chojnowska, O.; Dabrowski, R.; Chigrinov, V.G. Terahertz properties of fluorinated liquid crystals. Liq. Cryst. 2013, doi:10.1080/02678292.2013.816793.
[114]  Hird, M.; Toyne, K.J.; Gray, G.W.; Day, S.E.; McDonnell, D.G. The synthesis and high optical birefringence of nematogens incorporating 2,6-disubstituted naphthalenes and terminal cyano-substituent. Liq. Cryst. 1993, 15, 123–150, doi:10.1080/02678299308031946.
[115]  Seed, A.J.; Toyne, K.J.; Goodby, J.W.; Hird, M. Synthesis, transition temperatures, and optical properties of various 2,6-disubstituted napthalenes and related 1-benzothiophenes with butylsulfanyl and cyano or isothiocyanto terminal group. J. Mater. Chem. 2000, 10, 2096–2080.
[116]  Sekine, C.; Fujisawa, K.; Iwakura, K.; Minai, M. High birefringence phenylacetylene liquid crystals with low viscosity. Mol. Cryst. Liq. Cryst. 2001, 346, 711–718.
[117]  Herman, J.; Dziaduszek, J.; D?browski, R.; K?dzierski, J.; Kowiorski, K.; Dasari, V.S.; Dhara, S.; Kula, P. Novel high birefringent isothiocyanates based on quaterphenyl and phenylethynyltolane molecular cores. Liq. Cryst. 2013, 40, 1174–1182, doi:10.1080/02678292.2013.808768.
[118]  Zhang, Y.-M.; Wang, D.; Miao, Z.-C.; Jin, S.-K.; Yang, H. Novel high birefringence bistolane liquid crystals with lateral fluorosubstituent. Liq. Cryst. 2012, 39, 1330–1339, doi:10.1080/02678292.2012.725871.
[119]  Wu, S.T.; Hsu, C.S.; Chuang, Y.Y.; Cheng, H.B. Physical properties of polar bis-tolane liquid crystals. Jpn. J. Appl. Phys. Part 2 2000, 39, L38–L41.
[120]  Celiński, M.; Urban, S.; Chojnowska, O.; Kula, P.; Dziaduszek, J.; D?browski, R. Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing. Liq. Cryst. 2013, doi:10.1080/02678292.2013.813085.
[121]  Xianyu, H.; Liang, X.; Sun, J.; Wu, S.T. High performance dual frequency liquid crystal compounds and mixture for operation at elevated temperature. Liq. Cryst. 2010, 37, 1493–1499, doi:10.1080/02678292.2010.528803.
[122]  Gauza, S.; Zhao, Y.; Le Cor, T.; Wu, S.T.; Dziaduszek, J.; Sasnouski, G.; Dabrowski, R.; Chien, L.C. Enhancing birefringence by doping fluorinated phenyltolanes. J. Disp. Technol. 2006, 2, 327–332, doi:10.1109/JDT.2006.885160.
[123]  Liao, Y.M.; Chen, H.L.; Hsu, C.S.; Gauza, S.; Wu, S.T. Synthesis and mesomorphic properties of super high birefringence isothiocyanato bistolane liquid crystals. Liq. Cryst. 2007, 34, 507–517, doi:10.1080/02678290701223954.
[124]  Gauza, S.; Wen, C.H.; Wu, S.T.; Janarthanan, N.; Hsu, C. Super high birefringence isothiocyanto biphenyl-bistolane liquid crystals. Jpn. J. Appl. Phys. 2004, 43, 7634–7638.
[125]  Sekine, C.; Konya, N.; Minai, M.; Fujisawa, K. Synthesis and properties of high birefringence liquid crystals: Thiophenylacetylene and benzothiazolylacetylene derivatives. Liq. Cryst. 2001, 28, 1361–1367, doi:10.1080/02678290110061386.
[126]  Sekine, C.; Ishitobi, M.; Iwakura, K.; Minai, M.; Fujisawa, K. Novel high birefringence dibenzothiophenylacetylene liquid crystals. Liq. Cryst. 2002, 29, 355–367, doi:10.1080/02678290110102434.
[127]  Stolarz, Z.; D?browski, R.; Parka, J.; Huang, X.; Lapanik, W. Low viscosity mixtures for TN and STN displays. P. Soc. Photo-Opt. Ins. 2000, 4147, 41–48.
[128]  Gauza, S.; Kula, P.; D?browski, R.; Sasnouski, G.; Lapanik, V. High optical anisotropy nematic single compounds and mixtures. Trans. Electr. Electron. Mater. 2012, 13, 2–5, doi:10.4313/TEEM.2012.13.1.2.
[129]  Reuter, M.; Vieweg, N.; Fisher, B.M.; Mikulicz, M.; Koch, M.; Garbat, K.; Dabrowski, R. Highly birefringent, low-loss liquid crystals for terahertz applications. APL Mater. 2013, 1, 012107:1–012107:7.
[130]  Nowinowski-Kruszelnicki, E.; Jaroszewicz, L.; Raszewski, Z.; Soms, L.; Piecek, W.; Perkowski, P.; K?dzierski, J.; D?browski, R.; Olifierczuk, M.; Garbat, K.; et al. High birefringence liquid crystal mixtures for electro-optical devices, Liquid crystal cell for space-borne laser rangefinder to space mission applications. Opto-Electron. Rev. 2012, 20, 31–38.
[131]  Wu, S.T. Birefringence dispersions of liquid-crystals. Phys. Rev. A 1986, 33, 1270–1274, doi:10.1103/PhysRevA.33.1270.
[132]  Li, J.; Wu, S.T.; Brugioni, S.; Meucci, R.; Faetti, S. Infrared refractive indices of liquid crystals. J. Appl. Phys. 2005, 97, 073501:1–073501:5.
[133]  Reuter, M.; Garbat, K.; Vieweg, N.; Fischer, B.M.; Dabrowski, R.; Koch, M.; Dziaduszek, J.; Urban, S. Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides. J. Mater. Chem. C 2013, 1, 4457–4463, doi:10.1039/c3tc30464g.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413