全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diagnostics  2013 

Gene Expression of Glucose Transporter 1 (GLUT1), Hexokinase 1 and Hexokinase 2 in Gastroenteropancreatic Neuroendocrine Tumors: Correlation with F-18-fluorodeoxyglucose Positron Emission Tomography and Cellular Proliferation

DOI: 10.3390/diagnostics3040372

Keywords: neuroendocrine tumors, glucose, gene expression, imaging, FDG-PET, proliferation index

Full-Text   Cite this paper   Add to My Lib

Abstract:

Neoplastic tissue exhibits high glucose utilization and over-expression of glucose transporters (GLUTs) and hexokinases (HKs), which can be imaged by 18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET). The aim of the present study was to investigate the expression of glycolysis-associated genes and to compare this with FDG-PET imaging as well as with the cellular proliferation index in two cancer entities with different malignant potential. Using real-time PCR, gene expression of GLUT1, HK1 and HK2 were studied in 34 neuroendocrine tumors (NETs) in comparison with 14 colorectal adenocarcinomas (CRAs). The Ki67 proliferation index and, when available, FDG-PET imaging was compared with gene expression. Overexpression of GLUT1 gene expression was less frequent in NETs (38%) compared to CRAs (86%), P = 0.004. HK1 was overexpressed in 41% and 71% of NETs and CRAs, respectively ( P = 0.111) and HK2 was overexpressed in 50% and 64% of NETs and CRAs, respectively ( P = 0.53). There was a significant correlation between the Ki67 proliferation index and GLUT1 gene expression for the NETs (R = 0.34, P = 0.047), but no correlation with the hexokinases. FDG-PET identified foci in significantly fewer NETs (36%) than CRAs (86%), ( P = 0.04). The gene expression results, with less frequent GLUT1 and HK1 upregulation in NETs, confirmed the lower metabolic activity of NETs compared to the more aggressive CRAs. In accordance with this, fewer NETs were FDG-PET positive compared to CRA tumors and FDG uptake correlated with GLUT1 gene expression.

References

[1]  Brown, R.S.; Leung, J.Y.; Kison, P.V.; Zasadny, K.R.; Flint, A.; Wahl, R.L. Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J. Nucl. Med.?1999, 40, 556–565. 10210213
[2]  Kloppel, G.; Couvelard, A.; Perren, A.; Komminoth, P.; McNicol, A.M.; Nilsson, O.; Scarpa, A.; Scoazec, J.Y.; Wiedenmann, B.; Papotti, M.; Rindi, G.; Plockinger, U.; Mallorca Consensus Conference participants; European Neuroendocrine Tumor Society. ENETS Guidelines for the Standards of Care in Patients with Neuroendocrine Tumors: Towards a Standardized Approach to the Diagnosis of Gastroenteropancreatic Neuroendocrine Tumors and Their Prognostic Stratification. Neuroendocrinology?2008, 90, 162–166.
[3]  Rindi, G.; Arnold, R.; Bosman, F.T.; Capella, C.; Klimstra, D.S.; Kloppel, G.; Komminoth, P.; Solcia, E. Nomenclature and Classification of Neuroendocrine Neoplasms of the Digestive System. In WHO Classification of Tumours of the Digestive System; IARC Press: Lyon, France, 2010.
[4]  Binderup, T.; Knigge, U.; Loft, A.; Mortensen, J.; Pfeifer, A.; Federspiel, B.; Hansen, C.P.; H?jgaard, L.; Kjaer, A. Functional imaging of neuroendocrine tumors: A head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J. Nucl. Med.?2010, 51, 704–712, doi:10.2967/jnumed.109.069765.
[5]  Ong, L.C.; Jin, Y.; Song, I.C.; Yu, S.; Zhang, K.; Chow, P.K. 2-[18F]-2-deoxy-D-glucose (FDG) uptake in human tumor cells is related to the expression of GLUT1 and hexokinase II. Acta Radiol.?2008, 49, 1145–1153, doi:10.1080/02841850802482486.
[6]  Aloj, L.; Caracó, C.; Jagoda, E.; Eckelman, W.C.; Neumann, R.D. GLUT1 and hexokinase expression: Relationship with 2-fluoro-2-deoxy-D-glucose uptake in A431 and T47D cells in culture. Cancer Res.?1999, 59, 4709–4714. 10493529
[7]  Higashi, K.; Ueda, Y.; Sakurai, A.; Wang, X.M.; Xu, L.; Murakami, M.; Seki, H.; Oguchi, M.; Taki, S.; Nambu, Y.; et al. Correlation of GLUT1 glucose transporter expression with [18F]FDG uptake in non-small cell lung cancer. Eur. J. Nucl. Med.?2000, 27, 1778–1785, doi:10.1007/s002590000367.
[8]  Mathupala, S.P.; Ko, Y.H.; Pedersen, P.L. Hexokinase II: Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene?2006, 25, 4777–4786, doi:10.1038/sj.onc.1209603.
[9]  Watson, A.J.; Lolohea, S.; Robertson, G.M.; Frizelle, F.A. The role of positron emission tomography in the management of recurrent colorectal cancer: A review. Dis. Colon Rectum?2007, 50, 102–114, doi:10.1007/s10350-006-0735-7.
[10]  de Geus-Oei, L.F.; Ruers, T.J.M.; Punt, C.J.A.; Leer, J.W.; Corstens, F.H.M.; Oyen, W.J.G. FDG-PET in colorectal cancer. Cancer Imaging?2006, 6, S71–S81, doi:10.1102/1470-7330.2006.9014.
[11]  Gu, J.; Yamamoto, H.; Fukunaga, H.; Danno, K.; Takemasa, I.; Ikeda, M.; Tatsumi, M.; Sekimoto, M.; Hatazawa, J.; Nishimura, T.; Monden, M. Correlation of GLUT1 overexpression, tumor size, and depth of invasion with 18F-2-fluoro-2-deoxy-D: Glucose uptake by positron emission tomography in colorectal cancer. Digest Dis. Sci.?2006, 51, 2198–2205, doi:10.1007/s10620-006-9428-2.
[12]  Song, Y.S.; Lee, W.W.; Chung, J.H.; Park, S.Y.; Kim, Y.K.; Kim, S.E. Correlation between FDG uptake and glucose transporter type 1 expression in neuroendocrine tumors of the lung. Lung Cancer?2008, 61, 54–60, doi:10.1016/j.lungcan.2007.11.012.
[13]  Hutchings, M.; Loft, A.; Hansen, M.; Ralfkiaer, E.; Spechit, L. Different histopathological subtypes of Hodgkin lymphoma show significantly different levels of FDG uptake. Hematol. Oncol.?2006, 24, 146–150, doi:10.1002/hon.782.
[14]  Stratagene Laboratory Tools software. Available online: http://www.stratagene.com/qpcr/links.asp (accessed on 1 June 2005).
[15]  Primer 3. Available online: http://primer3.sourceforge.net/ (accessed on 16 October 2013).
[16]  Binderup, T.; Knigge, U.; Mellon, M.A.; Palnaes, H.C.; Kjaer, A. Quantitative gene expression of somatostatin receptors and noradrenaline transporter underlying scintigraphic results in patients with neuroendocrine tumors. Neuroendocrinology?2008, 87, 223–232, doi:10.1159/000113128.
[17]  Shebani, K.O.; Souba, W.W.; Finkelstein, D.M.; Stark, P.C.; Elgadi, K.M.; Tanabe, K.K.; Ott, M.J. Prognosis and survival in patients with gastrointestinal tract carcinoid tumors. Ann. Surg.?1999, 229, 815–821, doi:10.1097/00000658-199906000-00008.
[18]  Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Thun, M.J. Cancer statistics. Ca—A Cancer J. Clin.?2007, 57, 43–66, doi:10.3322/canjclin.57.1.43.
[19]  Panzuto, F.; Nasoni, S.; Falconi, M.; Corleto, M.M.; Capurso, G.; Cassetta, S.; di Fonzo, M.; Tornatore, V.; Milione, M.; Angeletti, S.; et al. Prognostic factors and survival in endocrine tumor patients: Comparison between gastrointestinal and pancreatic localization. Endocr. Relat. Cancer?2005, 12, 1083–1092, doi:10.1677/erc.1.01017.
[20]  Pape, U.F.; Berndt, U.; Müller-Nordhorn, J.; Bohmig, M.; Roll, S.; Koch, M.; Willich, S.N.; Wiedenmann, B. Prognostic factors of long-term outcome in gastroenteropancreatic neuroendocrine tumours. Endocr. Relat. Cancer?2008, 15, 1083–1097, doi:10.1677/ERC-08-0017.
[21]  Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahike, J.; Zuelke, C.; Burkart, C.; et al. Adjuvant chemotherapy with gemcitabine vs. observation in patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA?2007, 297, 267–277, doi:10.1001/jama.297.3.267.
[22]  Neoptolemos, J.P.; Stocken, D.D.; Friess, H.; Bassi, C.; Dunn, J.A; Hickey, H.; Beger, H.; Fernandez-Cruz, L.; Dervenis, C.; Lacaine, F.; et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med.?2004, 350, 1200–1210, doi:10.1056/NEJMoa032295.
[23]  Fischer, B.; Lassen, U.; Mortensen, J.; Larsen, S.; Loft, A.; Bertelsen, A.; Ravn, J.; Clementsen, P.; H?gholm, A.; Larsen, K.; et al. Preoperative staging of lung cancer with combined PET-CT. N. Engl. J. Med.?2009, 361, 32–39, doi:10.1056/NEJMoa0900043.
[24]  Hutchings, M.; Loft, A.; Hansen, M.; Pedersen, L.M.; Berthelsen, A.K.; Keiding, S.; D’Amore, F.; Boesen, A.M.; Roemer, L.; Specht, L. Position emission tomography with or without computed tomography in the primary staging of Hodgkin’s lymphoma. Haematologica?2006, 91, 482–489. 16585015
[25]  Torizuka, T.; Tanizaki, Y.; Kanno, T.; Futatsubashi, M.; Naitou, K.; Ueda, Y.; Ouchi, Y. Prognostic value of 18F-FDG PET in patients with head and neck squamous cell cancer. AJR Am. J. Roentgenol.?2009, 192, W156–60, doi:10.2214/AJR.08.1429.
[26]  Whiteford, M.H.; Whiteford, H.M.; Yee, L.F.; Ogunbiyi, O.A.; Dehdashti, F.; Siegel, B.A.; Birnbaum, E.H.; Fleshman, J.W.; Kodner, I.J.; Read, T.E. Usefulness of FDG-PET scan in the assessment of suspected metastatic or recurrent adenocarcinoma of the colon and rectum. Dis. Colon Rectum?2000, 43, 759–767, doi:10.1007/BF02238010.
[27]  Binderup, T.; Knigge, U.; Loft, A.; Federspiel, B.; Kjaer, A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin. Cancer Res.?2010, 16, 978–985, doi:10.1158/1078-0432.CCR-09-1759.
[28]  Yen, T.C.; See, L.C.; Lai, C.H.; Yah-Huei, C.W.; Ng, K.K.; Ma, S.Y.; Lin, W.J.; Chen, J.T.; Chen, W.J.; Lai, C.R.; Hsueh, S. 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. J. Nucl. Med.?2004, 45, 22–29. 14734665
[29]  Tohma, T.; Okazumi, S.; Makino, H.; Cho, A.; Mochiduki, R.; Shuto, K.; Kudo, H.; Matsubara, K.; Gunji, H.; Ochiai, T. Relationship between glucose transporter, hexokinase and FDG-PET in esophageal cancer. Hepatogastroenterology?2005, 52, 486–490. 15816463
[30]  Zhao, S.; Kuge, Y.; Mochizuki, T.; Takahashi, T.; Nakada, K.; Sato, M.; Takei, T.; Tamaki, N. Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J. Nucl. Med.?2005, 46, 675–682. 15809491
[31]  Lee, J.D.; Yang, W.I.; Park, Y.N.; Kim, K.S.; Choi, J.S.; Yun, M.; Ko, D.; Kim, T.S.; Cho, A.E.; Kim, H.M.; et al. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased 18F-FDG uptake. J. Nucl. Med.?2005, 46, 1753–1759. 16204727
[32]  Kayani, I.; Bomanji, J.B.; Groves, A.; Conway, G.; Gacinovic, S.; Win, T.; Dickson, J.; Caplin, M.; Ell, P.J. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer?2008, 112, 2447–2455, doi:10.1002/cncr.23469.
[33]  Oberg, K.; Astrup, L.; Eriksson, B.; Falkmer, S.E.; Falkmer, U.G.; Gustafsen, J.; Haglund, C.; Knigge, U.; Vatn, M.H.; V?lim?ki, M.; et al. Guidelines for the management of gastroenteropancreatic neuroendocrine tumours (including bronchopulmonary and thymic neoplasms). Part I—General overview. Acta Oncol.?2004, 43, 617–625, doi:10.1080/02841860410018575.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413