全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diversity  2013 

Upland Habitat Quality and Historic Landscape Composition Influence Genetic Variation of a Pond-Breeding Salamander

DOI: 10.3390/d5040724

Keywords: population genetics, Ambystoma maculatum, upland core habitat, historic landscapes, microsatellite DNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the temporal and spatial scale at which habitat alteration impacts populations is important for conservation and management. Amphibians have declined more than other vertebrates, and pond-breeding species are particularly susceptible to habitat loss and fragmentation because they have terrestrial and aquatic life stages. One approach to management of pond-breeding species is protection of core upland habitat surrounding the breeding pond. We used genetic variation as an indicator of population status in a common amphibian species, spotted salamanders ( Ambystoma maculatum), to determine how amount of suitable upland habitat relates to population status in the greater Charlotte, North Carolina, USA metropolitan area. We developed candidate models to evaluate the relative influence of historical and contemporary forested habitat availability on population genetic variation at two spatial scales of upland area (164 m and 2000 m) at four time intervals over the past seven decades (1938, 1978, 1993, 2005). We found that historical land cover best predicted contemporary allelic richness. Inbreeding coefficient and observed heterozygosity were not effectively predicted by forest cover at either spatial or temporal scales. Allelic richness was best predicted at the smaller spatial scale in the 1993 time interval. Predicting and understanding how future landscape configuration affects genetic variation of common and rare species is imperative for the conservation of amphibian and other wildlife populations.

References

[1]  Lomolino, M.V.; Riddle, B.R.; Whittaker, R.J.; Brown, J.H. Biogeography, 4th ed. ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2010.
[2]  Moilanen, A.; Franco, A.M.A.; Early, R.I.; Fox, R.; Wintle, B.; Thomas, C.D. Prioritizing multiple-use landscapes for conservation: Methods for large multi-species planning problems. Proc. Biol. Sci. 2005, 272, 1885–1891, doi:10.1098/rspb.2005.3164.
[3]  McKinney, M.L. Urbanization, biodiversity, and conservation. BioScience 2002, 52, 883–890, doi:10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2.
[4]  Jetz, W.; Wilcove, D.S.; Dobson, A.P. Projected impacts of climate and landscape change on the global diversity of birds. PLoS One 2007, 5, 1211–1219.
[5]  Syphard, A.D.; Clarke, K.C.; Franklin, J.; Regan, H.M.; McGinnis, M. Forecasts of habitat loss and fragmentation due to urban growth are sensitive to source input. J. Environ. Manag. 2011, 92, 1882–1898, doi:10.1016/j.jenvman.2011.03.014.
[6]  Richardson, J.L. Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol. Ecol. 2012, 21, 4437–4451, doi:10.1111/j.1365-294X.2012.05708.x.
[7]  Hamer, A.J.; McDonnell, M.J. Amphibian ecology and conservation in the urbanizing world: A review. Biol. Conserv. 2008, 141, 2432–2449, doi:10.1016/j.biocon.2008.07.020.
[8]  Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and trends of amphibian declines and extinctions worldwide. Science 2004, 306, 1783–1786, doi:10.1126/science.1103538.
[9]  Harper, E.B.; Rittenhouse, T.A.G.; Semlitsch, R.D. Demographic consequences of terrestrial habitat loss for pool-breeding amphibians: Predicting extinction risks associated with inadequate size of buffer zones. Conserv. Biol. 2008, 22, 1205–1215, doi:10.1111/j.1523-1739.2008.01015.x.
[10]  Rothermel, B.B. Migratory success of juveniles: A potential constraint on connectivity for pond-breeding amphibians. Ecol. Appl. 2004, 14, 1535–1546, doi:10.1890/03-5206.
[11]  Cushman, S.A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 2006, 128, 231–240, doi:10.1016/j.biocon.2005.09.031.
[12]  Price, S.J.; Dorcas, M.E.; Gallant, A.L.; Klaver, R.W.; Willson, J.D. Three decades of urbanization: Estimating the impact of land-cover change on stream salamander populations. Biol. Conserv. 2006, 133, 436–441, doi:10.1016/j.biocon.2006.07.005.
[13]  Holzhauer, S.I.J.; Ekschmitt, K.; Sander, A.-C.; Dauber, J.; Wolters, V. Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landscape Ecol. 2006, 21, 891–899, doi:10.1007/s10980-005-0438-9.
[14]  Orsini, L.; Corander, J.; Alasentie, A.; Hanski, I. Genetic spatial structure in a butterfly metapopulation correlates better with past than present demographic structure. Mol. Ecol. 2008, 17, 2629–2642, doi:10.1111/j.1365-294X.2008.03782.x.
[15]  Porej, D.; Micacchion, M.; Hetherington, T.E. Core terrestrial habitat for conservation of local populations of salamanders and wood frogs in agricultural landscapes. Biol. Conserv. 2004, 120, 399–409, doi:10.1016/j.biocon.2004.03.015.
[16]  Semlitsch, R.D.; Bodie, J.R. Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conserv. Biol. 2003, 17, 1219–1228, doi:10.1046/j.1523-1739.2003.02177.x.
[17]  Gamble, L.R.; McGarigal, K.; Jenkins, C.L.; Timm, B.C. Limitations of regulated “buffer zones” for the conservation of marbled salamanders. Wetlands 2006, 26, 298–306, doi:10.1672/0277-5212(2006)26[298:LORBZF]2.0.CO;2.
[18]  Semlitsch, R.D. Biological delineation of terrestrial buffer zones for pond-breeding salamanders. Conserv. Biol. 1998, 12, 1113–1119, doi:10.1046/j.1523-1739.1998.97274.x.
[19]  Van Buskirk, J. Local and landscape influence on amphibian occurrence and abundance. Ecology 2005, 86, 1936–1947, doi:10.1890/04-1237.
[20]  Zamudio, K.R.; Wieczorek, A.M. Fine-Scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populations. Mol. Ecol. 2007, 16, 257–274, doi:10.1111/j.1365-294X.2006.03139.x.
[21]  Greenwald, K.R.; Gibbs, H.L.; Waite, T.A. Efficacy of land-cover models in predicting isolation of marbled salamander populations in a fragmented landscape. Conserv. Biol. 2009, 23, 1232–1241, doi:10.1111/j.1523-1739.2009.01204.x.
[22]  Purrenhage, J.L.; Niewiarowski, S.P.H.; Moore, F.B.G. Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape. Mol. Ecol. 2009, 18, 235–247, doi:10.1111/j.1365-294X.2008.04024.x.
[23]  Richter, S.C.; Crother, B.I.; Broughton, R.E. Genetic consequences of population reduction and geographic isolation in the critically endangered frog. Copeia. 2009, 4, 799–806.
[24]  Spear, S.F.; Storfer, A. Landscape genetic structure of coastal tailed frogs (Ascaphus truei) in protected vs. managed forests. Mol. Ecol. 2008, 17, 4642–4656, doi:10.1111/j.1365-294X.2008.03952.x.
[25]  Savage, W.K.; Zamudio, K.R. Spotted Salamanders, Ambystoma maculatum. In Amphibian Declines: The Conservation Status of United States Species; Lannoo, M.J., Ed.; University of California Press: Berkeley, CA, USA, 2005; pp. 621–627.
[26]  Julian, S.E.; Kings, T.L.; Savage, W.K. Isolation and characterization of novel tetra-nucleotide microsatellite DNA markers for the spotted salamander, Ambystoma maculatum. Mol. Ecol. Notes 2003, 3, 7–9, doi:10.1046/j.1471-8286.2003.00333.x.
[27]  Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 1995, 86, 485–486.
[28]  Rothermel, B.B.; Semlitsch, R.D. An experimental investigation of landscape resistance of forest versus old-field habitats of emigrating juvenile amphibians. Conserv. Biol. 2002, 16, 1324–1332, doi:10.1046/j.1523-1739.2002.01085.x.
[29]  Rothermel, B.B.; Semlitsch, R.D. Consequences of forest fragmentation for juvenile survival in spotted (Ambystoma maculatum) and marbled (Ambystoma opacum) salamanders. Can. J. Zool. 2006, 84, 797–807, doi:10.1139/z06-056.
[30]  Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach, 2nd ed. ed.; Springer: New York, NY, USA, 2002.
[31]  Hart, J.F. Cropland concentrations in the south. Ann. Assoc. Am. Geogr. 1978, 68, 505–517, doi:10.1111/j.1467-8306.1978.tb01213.x.
[32]  Hart, J.F. Land use change in a piedmont county. Ann. Assoc. Am. Geogr. 1980, 70, 492–527, doi:10.1111/j.1467-8306.1980.tb01329.x.
[33]  Griffith, J.A.; Stehman, S.V.; Loveland, T.R. Landscape trends in Mid-Atlantic and Southeastern United States ecoregions. Environ. Manag. 2003, 32, 572–588, doi:10.1007/s00267-003-0078-2.
[34]  Napton, D.E.; Auch, R.F.; Headley, R.; Taylor, J.L. Land changes and their driving forces in the Southeastern United States. Reg. Environ. Change 2010, 10, 37–53, doi:10.1007/s10113-009-0084-x.
[35]  Richter, S.C.; Jackson, J.A.; Hinderliter, M.; Epperson, D.; Theodorakis, C.W.; Adams, S.M. Conservation genetics of the largest cluster of federally threatened gopher tortoise (Gopherus polyphemus) colonies with implications for species management. Herpetologica 2011, 67, 406–419, doi:10.1655/HERPETOLOGICA-D-10-00044.1.
[36]  Armstrong, D.P. Integrating the metapopulation and habitat paradigms for understanding broad-scale declines of species. Conserv. Biol. 2005, 19, 1402–1410, doi:10.1111/j.1523-1739.2005.00117.x.
[37]  Brehm, K. The Acceptance of 0.2-metre Tunnels by Amphibians during Their Migration to the Breeding Site. In Amphibians and Roads; Langton, T.E.S., Ed.; ACO Polymer Products Ltd: Bedfordshire, UK, 1989; pp. 29–42.
[38]  Mazerolle, M.J. Drainage ditches facilitate frog movements in a hostile landscape. Landsc. Ecol. 2004, 20, 579–590, doi:10.1007/s10980-004-3977-6.
[39]  White, D.; Minotti, P.G.; Barczak, M.J.; Sifneos, J.C.; Freemark, K.E.; Santelmann, M.V.; Preston, E.M. Assessing risks to biodiversity from future landscape change. Conserv. Biol. 1997, 11, 349–360.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413