全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diversity  2013 

Genetic Diversity and Population Structure of Two Freshwater Copepods (Copepoda: Diaptomidae), Neodiaptomus schmackeri (Poppe and Richard, 1892) and Mongolodiaptomus birulai (Rylov, 1922) from Taiwan

DOI: 10.3390/d5040796

Keywords: metapopulation, genetic structure, zooplankton, COI gene, mtDNA, copepods, Taiwan

Full-Text   Cite this paper   Add to My Lib

Abstract:

We used the mitochondria DNA COI (cytochrome c oxidase subunit I) sequence as a genetic marker to analyze the population genetic structure of two species of freshwater copepods, Neodiaptomus schmackeri (Poppe and Richard, 1892) and Mongolodiaptomus birulai (Rylov, 1922) from Taiwan. Four populations with 51 individuals of N. schmackeri and five populations with 65 individuals of M. birulai were included. We compared the nucleotide sequences of a 635-bp fragment of the COI gene of N. schmackeri and a 655-bp fragment of the COI gene of M. birulai, and eight and 14 unique haplotypes were recorded, respectively. Tseng-Wen reservoir and Wu-San-Tao reservoir are linked by a channel, and the gene flow between them was unrestricted (F st = 0.058; N m = 4.04; F st, population differentiation parameter; N m, the number of succesfull migrants per generation); the gene flow between all other populations of both species was restricted (F st = 0.4–0.99; N m = 0–0.37). Based on the COI gene diversification pattern, we suggest that most populations of N. schmackeri and M. birulai are isolated from each other. According to the neighbor-joining tree and the minimum spanning network (MSN), the species have similar metapopulation genetic structures. Genetic distance was not found to be correlated with geographical distance. The genetic diversification pattern was not shown to be comparable with geographical isolation owing to long-distance separation. The genetic structure of the present populations may result from serial extinction and redistribution of the populations formed in each reservoir relative to time. Human activity in the reservoirs with regards to water resource management and the fishery industry also exerts an effect on population redistribution.

References

[1]  Daniel, L.H.; Clark, A.G. Principles of Population Genetics, 4th ed. ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2007; pp. 45–92.
[2]  Hamilton, M.B. Population Genetics; Wiley Blackwell Press: Hoboken, NJ, USA, 2009; pp. 9–51.
[3]  Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am.?1969, 15, 237–240.
[4]  MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967; pp. 19–67.
[5]  Hanski, I. Metapopulation dynamics. Nature?1998, 396, 41–49, doi:10.1038/23876.
[6]  Van Nouhuys, S. Metapopulation Ecology. In Encyclopedia of Life Sciences (ELS); John Wiley & Sons, Ltd.: Chichester, UK, 2009. doi:10.1002/9780470015902.a0021905.
[7]  Bohonak, A.J.; Jenkins, D.G. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol. Lett.?2003, 6, 783–796, doi:10.1046/j.1461-0248.2003.00486.x.
[8]  Green, A.J.; Figuerola, J. Recent advances in the study of long-distance dispersal of aquativ invertebrates via birds. Divers. Distrib.?2005, 11, 149–156, doi:10.1111/j.1366-9516.2005.00147.x.
[9]  Kiefer, F. Susswassercopoden aus Ostassien, II. Neue Diaptomiden und Cyclopiden von der Insel Formosa. Zool. Anz.?1937, 119, 58–64.
[10]  Kiefer, F. Freilebende Ruderfusskrebes (Crustacea Copepoda) von Formosa. Bull. Biogeogra. Soc. Jap.?1938, 8, 35–38.
[11]  Young, S.S.; Shih, C.T. Freshwater calanoids (Copepoda) of Taiwan with some comments on the morphology of Neutrodiaptomus tumidus Kiefer, 1937 observed by SEM. Crustac. Mongr.?2012, 16, 545–566.
[12]  Braga, E.; Zardoya, R.; Meyer, A.; Yen, J. Mitochondrial and nuclear rRNA based copepod phylogeny with emphasis on the Euchaetidae (Calanoida). Mar. Biol.?1999, 133, 79–90, doi:10.1007/s002270050445.
[13]  Bucklin, A.; Frost, B.W. Molecules versus Morphology: A Comparative View of Evolution Within and Among Calanoid Copepod Species. In Proceedings of the 8th International Conference on Copepoda, Keelung, Taiwan, 21–26 July 2002. Abstract Book; p. 23.
[14]  Bucklin, A.; Kaartvedt, S.; Guarnieri, M.; Goswami, U. Population genetics of drifting (Calanus spp.) and resident (Acartia clausi) plankton in Norwegian fjords. J. Plankton. Res.?2000, 22, 1237–1251, doi:10.1093/plankt/22.7.1237.
[15]  Bucklin, A.; Frost, B.W.; Kocher, T.D. Molecular systematics of six Calanus and three Metridia species (Calanoida: Copepoda). Mar. Biol.?1995, 121, 655–664, doi:10.1007/BF00349301.
[16]  Bucklin, A.; Wiebe, P.H. Low mitochondrial diversity and small effective population sizes of the copepods Calanus finmarchicus and Nannocalanus minor: Possible impact of climatic variation during recent glaciation. J. Hered.?1998, 89, 383–392, doi:10.1093/jhered/89.5.383.
[17]  Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol.?1994, 3, 294–199. 7881515
[18]  Eyun, S.I.; Soh, H.Y.; Suh, H.L.; Lee, Y.H. Molecular phylogeny of the Korean Pseudodiaptomid Copepods (Calanoida): An Assessment Based on COI Sequences. In Proceedings of the 8th International Conference on Copepoda, Keelung, Taiwan, 21–26 July 2002. Abstract Book; p. 45.
[19]  Gerken, S.; Wyngaard, G.; Rocha, C.E.F. A molecular phylogeny of the cyclopinae, with a comment on possible relevance of chromation diminution on rates of speciation. In Proceedings of the 8th International Conference on Copepoda, Keelung, Taiwan, 21–26 July 2002. Abstract Book; p. 47.
[20]  Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol.?2007, 24, 1596–1599, doi:10.1093/molbev/msm092.
[21]  Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987; pp. 21–132.
[22]  Wright, S. Evolution and Genetics of Populations, vol. 4. Variability in and Among Natural Populations; University of Chicago Press: Chicago, IL, USA, 1978.
[23]  Hudson, R.R.; Slatkin, M.; Maddison, W.P. Estimation of levels of gene flow from DNA sequence data. Genetics?1992, 132, 583–589. 1427045
[24]  Saitou, N.; Nei, M. Neighbor-joining method. Mol. Biol. Evol.?1987, 4, 406–425. 3447015
[25]  Schneider, S.; Roessli, D.; Excoffier, L. ARLEQUIN, A Software for Population Genetics Data Analysis, Version 2.000; Genetics and Biometry Laboratory, University of Geneva: Geneva, Switzerland, 2000.
[26]  Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics?1989, 123, 585–595. 2513255
[27]  Fu, Y.X.; Li, W.H. Statistical tests of neutrality of mutations. Genetics?1993, 133, 693–709. 8454210
[28]  Shaklee, J.B.; Tamaru, C.S.; Waples, R.S. Speciation and marine fishes studied by the electrophretic anaiysis of protein. Pacif. Sci.?1982, 36, 141–157.
[29]  Brussard, P.F.; Ehrlich, P.R.; Murphy, D.D.; Wilcox, B.A.; Wright, J. Genetic distances and the taxonomy of checkerspot butterflies (Nymphalidae: Nymphalinae). J. Kansas Entomol. Soc.?1985, 58, 403–412.
[30]  Thrope, J.P.; Sole-Cava, A.M. The use of allozyme electrophoresis in invertebrate systematics. Zool. Scr.?1994, 23, 3–18, doi:10.1111/j.1463-6409.1994.tb00368.x.
[31]  Ferguson, J.W.H. On the use of genetic divergence for identifying species. Biol. J. Linn. Soc.?2002, 75, 509–516, doi:10.1046/j.1095-8312.2002.00042.x.
[32]  Forbes, A.E.; Chase, J.M. The role of habitat connectivity and landscape geometry in experimental zooplankton metacommunities. Oikos?2002, 96, 433–440, doi:10.1034/j.1600-0706.2002.960305.x.
[33]  Frisch, D. Dormancy, dispersal and survival of cyclopoid copepods (Cyclopida, Copepoda) in lowland fooldplain. Fresh. Biol.?2002, 47, 1269–1281, doi:10.1046/j.1365-2427.2002.00865.x.
[34]  Frisch, D.; Therlkeld, S.T. Flood-mediated dispersal versus hatching: Early recolonisation strategies of copepods in floodplain ponds. Fresh. Biol.?2005, 50, 323–330, doi:10.1111/j.1365-2427.2004.01321.x.
[35]  Michels, E.; Cottenie, K.; Neys, L.; Meester, L.D. Zooplankton on the move: First results on the quantification of dispersal of zooplankton in a set of interconnected ponds. Hydrobiol.?2001, 442, 117–126, doi:10.1023/A:1017549416362.
[36]  Dole-Olivier, M.J. Surface water-groundwater exchange in three dimensions on a backwater of the Rhone River. Fresh. Biol.?1998, 40, 93–109, doi:10.1046/j.1365-2427.1998.00335.x.
[37]  Havel, J.E.; Shurin, J.B. Mechanisms, effects and scales of dispersal in freshwater zooplankton. Limnol. Oceanogr.?2004, 49, 1229–1238, doi:10.4319/lo.2004.49.4_part_2.1229.
[38]  De Meester, L.; Gómez, A.; Okamura, B.; Schwenk, K. The Monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol.?2002, 23, 121–135, doi:10.1016/S1146-609X(02)01145-1.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133