全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diversity  2013 

Patterns of Evolutionary Speed: In Search of a Causal Mechanism

DOI: 10.3390/d5040811

Keywords: evolutionary speed, genetic evolution, latitude, population size, metabolic rate, diversity gradients

Full-Text   Cite this paper   Add to My Lib

Abstract:

The “integrated evolutionary speed hypothesis” proposes that the rate of genetic evolution influences all major biogeographical patterns of diversity including those associated with temperature, water availability, productivity, spatial heterogeneity and area. Consistent with this theory, rates of genetic evolution correspond with patterns of diversity and diversification. Here we review the mechanisms that have been proposed to explain these biogeographic patterns in rates of genetic evolution. Tests of several proposed mechanisms have produced equivocal results, whereas others such as those invoking annual metabolic activity, or a “Red Queen” effect, remain unexplored. However, rates of genetic evolution have been associated with both productivity mediated rates of germ cell division and active metabolic rates and these explanations therefore justify further empirical investigation.

References

[1]  Von Humboldt, A. Ansichten der Natur mit wissenschaftlichen Erlauterungen. (in German); Stuttgart, J.G. Cotta: Tubingen, Germany, 1808.
[2]  Rensch, B. Evolution above the Species Level; Methuen: London, UK, 1959.
[3]  Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. Oikos 1992, 65, 514–527, doi:10.2307/3545569.
[4]  Wright, S.D.; Gray, R.D.; Gardner, R.C. Energy and the rate of evolution: Inferences from plant rDNA substitution rates in the western Pacific. Evolution 2003, 57, 2893–2898.
[5]  Gillman, L.N.; Wright, S.D. Species richness and evolutionary speed: The influence of temperature, water and area. J. Biogeogr. 2003, doi:10.1111/jbi.12173.
[6]  Allen, A.P.; Gillooly, J.F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 2006, 9, 947–954, doi:10.1111/j.1461-0248.2006.00946.x.
[7]  Martin, A.P.; Palumbi, S.R. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. USA 1993, 90, 4087–4091, doi:10.1073/pnas.90.9.4087.
[8]  Cardillo, M. Latitude and rates of diversification in birds and butterflies. Proc. Biol. Sci. 1999, 266, 1221–1225, doi:10.1098/rspb.1999.0766.
[9]  Stevens, G.C. The latitudinal gradient in geographical range: How so many species coexist in the tropics. Am. Nat. 1989, 133, 240–256.
[10]  Nabholz, B.; Glémin, S.; Galtier, N. Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Mol. Biol. Evol. 2008, 25, 120–130, doi:10.1093/molbev/msm248.
[11]  Gillman, L.N.; Wright, S.D. Molecular evolution has wheels in the tropics. Biologist 2007, 54, 195–199.
[12]  Wright, S.; Keeling, J.; Gillman, L. The road from Santa Rosalia: A faster tempo of evolution in tropical climates. Proc. Natl. Acad. Sci. USA 2006, 103, 7718–7722, doi:10.1073/pnas.0510383103.
[13]  Bromham, L.; Cardillo, M. Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. J. Evol. Biol. 2003, 16, 200–207, doi:10.1046/j.1420-9101.2003.00526.x.
[14]  Davies, T.; Savolainen, V.; Chase, M.; Moat, J.; Barraclough, T. Environmental energy and evolutionary rates in flowering plants. Proc. Biol. Sci. 2004, 271, 2195–2200, doi:10.1098/rspb.2004.2849.
[15]  Gillman, L.N.; Keeling, D.J.; Gardner, R.C.; Wright, S.D. Faster evolution of highly conserved DNA in tropical plants. J. Evol. Biol. 2010, 23, 1327–1330.
[16]  Wright, S.D.; Ross, H.A.; Keeling, D.J.; McBride, P.; Gillman, L.N. Thermal energy and the rate of genetic evolution in marine fishes. Evol. Ecol. 2011, 25, 525–530, doi:10.1007/s10682-010-9416-z.
[17]  Wright, S.D.; Gillman, L.N.; Ross, H.A.; Keeling, D.J. Energy and the tempo of evolution in amphibians. Global Ecol. Biogeogr. 2010, 19, 733–740.
[18]  Louren?o, J.M.; Glémin, S.; Chiari, Y.; Galtier, N. The determinants of the molecular substitution process in turtles. J. Evol. Biol. 2013, 26, 38–50, doi:10.1111/jeb.12031.
[19]  Allen, A.P.; Gillooly, J.F.; Savage, V.M.; Brown, J.H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl. Acad. Sci. USA 2006, 103, 9130–9135, doi:10.1073/pnas.0603587103.
[20]  Bleiweiss, R. Slow rate of molecular evolution in high-elevation hummingbirds. Proc. Natl. Acad. Sci. USA 1998, 95, 612–616, doi:10.1073/pnas.95.2.612.
[21]  D’Horta, F.M.; Cuervo, A.M.; Ribas, C.C.; Brumfield, R.T.; Miyaki, C.Y. Phylogeny and comparative phylogeography of Sclerurus (Aves: Furnariidae) reveal constant and cryptic diversification in an old radiation of rain forest understorey specialists. J. Biogeogr. 2013, 40, 37–49.
[22]  Gillman, L.N.; McCowan, L.S.C.; Wright, S.D. The tempo of genetic evolution in birds: Body mass, population size and climate effects. J. Biogeogr. 2012, 39, 1567–1572, doi:10.1111/j.1365-2699.2012.02730.x.
[23]  Gillman, L.N.; McBride, P.; Keeling, D.J.; Ross, H.A.; Wright, S.D. Are rates of molecular evolution in mammals substantially accelerated in warmer environments? Reply. Proc. Biol. Sci. 2011, 278, 1294–1297, doi:10.1098/rspb.2010.2618.
[24]  Gillman, L.N.; Ross, H.A.; Keeling, J.D.; Wright, S.D. Latitude, elevation and the tempo of molecular evolution in mammals. Proc. Biol. Sci. 2009, 276, 3353–3359, doi:10.1098/rspb.2009.0674.
[25]  Adams, R.I.; Hadly, E.A. Genetic diversity within vertebrate species is greater at lower latitudes. Evol. Ecol. 2013, 27, 133–143, doi:10.1007/s10682-012-9587-x.
[26]  Chek, A.A.; Austin, J.D.; Lougheed, S.C. Why is there a tropical–temperate disparity in the genetic diversity and taxonomy of species? Evol. Ecol. Res. 2003, 5, 69–77.
[27]  Eo, S.H.; Wares, J.P.; Carroll, J.P. Population divergence in plant species reflects latitudinal biodiversity gradients. Biol. Lett. 2008, 4, 382–384, doi:10.1098/rsbl.2008.0109.
[28]  Martin, P.R.; Tewksbury, J.J. Latitudinal variation in subspecific diversification of birds. Evolution 2008, 62, 2775–2788, doi:10.1111/j.1558-5646.2008.00489.x.
[29]  Goldie, X.; Gillman, L.N.; Crisp, M.; Wright, S.D. Evolutionary speed limited by water in arid Australia. Proc. Biol. Sci. 2010, 277, 2645–2653.
[30]  Gillman, L.N.; Wright, S.D. The influence of productivity on the species richness of plants: A critical assessment. Ecology 2006, 87, 1234–1243, doi:10.1890/0012-9658(2006)87[1234:TIOPOT]2.0.CO;2.
[31]  Gillman, L.N.; Wright, S.D. Mega mistakes in meta-analyses: Devil in the detail. Ecology 2010, 91, 2550–2552, doi:10.1890/09-0339.1.
[32]  Mazinani, P.; Gillman, L.N.; Wright, S.D. The relationship between Amazonian Soils and Rates of Genetic Evolution, University of Auckland, Auckland, New Zealand, 2013. unpublished work.
[33]  Wu, C.I.; Li, W.H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 1985, 82, 1741–1745.
[34]  Bromham, L.; Rambaut, A.; Harvey, P.H. Determinants of rate variation in mammalian DNA sequence evolution. J. Mol. Evol. 1996, 43, 610–621.
[35]  Bleiweiss, R. Relative-rate tests and biological causes of molecular evolution in hummingbirds. Mol. Biol. Evol. 1998, 15, 481–491, doi:10.1093/oxfordjournals.molbev.a025947.
[36]  Nunn, G.B.; Stanley, S.E. Body size effects and rates of cytochrome b evolution in tube-nosed seabirds. Mol. Biol. Evol. 1998, 15, 1360–1371, doi:10.1093/oxfordjournals.molbev.a025864.
[37]  Bromham, L. Molecular clocks in reptiles: Life history influences rate of molecular evolution. Mol. Biol. Evol. 2002, 19, 302–309, doi:10.1093/oxfordjournals.molbev.a004083.
[38]  Gillooly, J.F.; Allen, A.P.; West, G.B.; Brown, J.H. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. USA 2005, 102, 140–145, doi:10.1073/pnas.0407735101.
[39]  Fontanillas, E.; Welch, J.J.; Thomas, J.A.; Bromham, L. The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla. BMC Evol. Biol. 2007, doi:10.1186/1471-2148-7-95.
[40]  Ashton, K.G.; Tracy, M.C.; de Queiroz, A. Is Bergmann’s rule valid for mammals. Am. Nat. 2000, 156, 390–415, doi:10.1086/303400.
[41]  White, E.P.; Ernest, S.K.M.; Kerkhoff, A.J.; Enquist, B.J. Relationships between body size and abundance in ecology. Trends Ecol. Evol. 2007, 22, 323–330.
[42]  Wright, S.D.; Gillman, L.N.; Ross, H.A.; Keeling, J.D. Slower tempo of microevolution in island birds: Implications for conservation biology. Evolution 2009, 63, 2276–2287.
[43]  Korall, P.; Schuettpelz, E.; Pryer, K.M. Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns. Evolution 2010, 64, 2786–2792, doi:10.1111/j.1558-5646.2010.01000.x.
[44]  Smith, S.A.; Donoghue, M.J. Rates of molecular evolution are linked to life history in flowering plants. Science 2008, 322, 86–89, doi:10.1126/science.1163197.
[45]  Lanfear, R.; Ho, S.Y.W.; Davies, T.J.; Moles, A.T.; Aarssen, L.; Swenson, N.G.; Warman, L.; Zanne, A.E.; Allen, A.P. Taller plants have lower rates of molecular evolution. Nat. Commun. 2013, 4. Article 1879.
[46]  Spradling, T.A.; Hafner, M.S.; Demastes, J.W. Differences in rate of cytochrome-b evolution among species of rodents. J. Mammal. 2001, 82, 65–80, doi:10.1644/1545-1542(2001)082<0065:DIROCB>2.0.CO;2.
[47]  Thomas, J.A.; Welch, J.J.; Woolfit, M.; Bromham, L. There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proc. Natl. Acad. Sci. USA 2006, 103, 7366–7371, doi:10.1073/pnas.0510251103.
[48]  Santos, J.C. Fast molecular evolution associated with high active metabolic rates in poison frogs. Mol. Biol. Evol. 2012, 29, 2001–2018, doi:10.1093/molbev/mss069.
[49]  Cooper, N.; Purvis, A. What factors shape rates of phenotypic evolution? A comparative study of cranial morphology of four mammalian clades. J. Evol. Biol. 2009, 22, 1024–1035, doi:10.1111/j.1420-9101.2009.01714.x.
[50]  Simpson, G.G. The Major Features of Evolution; Columbia University Press: New York, NY, USA, 1953.
[51]  Thomas, J.A.; Welch, J.J.; Lanfear, R.; Bromham, L. A generation time effect on the rate of molecular evolution in invertebrates. Mol. Biol. Evol. 2010, 27, 1173–1180, doi:10.1093/molbev/msq009.
[52]  Andreasen, K.; Baldwin, B.G. Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): Evidence from 18S–26S rDNA internal and external transcribed spacers. Mol. Biol. Evol. 2001, 18, 936–944, doi:10.1093/oxfordjournals.molbev.a003894.
[53]  Nikolaev, S.I.; Montoya-Burgos, J.I.; Popadin, K.; Parand, L.; Margulies, E.H.; National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program; Antonarakis, S.E. Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements. Proc. Natl. Acad. Sci. USA 2007, 104, 20443–20448, doi:10.1073/pnas.0705658104.
[54]  Welch, J.; Bininda-Emonds, O.; Bromham, L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol. Biol. 2008, doi:10.1186/1471-2148-8-53.
[55]  Tsantes, C.; Steiper, M.E. Age at first reproduction explains rate variation in the strepsirrhine molecular clock. Proc. Natl. Acad. Sci. USA 2009, 106, 18165–18170, doi:10.1073/pnas.0906686106.
[56]  Lanfear, R.; Thomas, J.A.; Welch, J.J.; Brey, T.; Bromham, L. Metabolic rate does not calibrate the molecular clock. Proc. Natl. Acad. Sci. USA 2007, 104, 15388–15393, doi:10.1073/pnas.0703359104.
[57]  April, J.; Hanner, R.H.; Mayden, R.L.; Bernatchez, L. Metabolic rate and climatic fluctuations shape continental wide pattern of genetic divergence and biodiversity in fishes. PLoS One 2013, 8, e70296.
[58]  Estabrook, G.F.; Smith, G.R.; Dowling, T.E. Body mass and temperature influence rates of mitochondrial DNA evolution in North American cyprinid fish. Evolution 2007, 61, 1176–1187, doi:10.1111/j.1558-5646.2007.00089.x.
[59]  Anderson, K.J.; Jetz, W. The broad-scale ecology of energy expenditure of endotherms. Ecol. Lett. 2005, 8, 310–318, doi:10.1111/j.1461-0248.2005.00723.x.
[60]  Clarke, A.; Rothery, P.; Isaac, N.J.B. Scaling of basal metabolic rate with body mass and temperature in mammals. J. Anim. Ecol. 2010, 79, 610–619, doi:10.1111/j.1365-2656.2010.01672.x.
[61]  McKechnie, A.E.; Lovegrove, B.G. Avian facultative hypothermic responses: A review. Condor 2002, 104, 705–724, doi:10.1650/0010-5422(2002)104[0705:AFHRAR]2.0.CO;2.
[62]  Munro, D.; Thomas, D.W.; Humphries, M.M. Torpor patterns of hibernating eastern chipmunks Tamias striatus vary in response to the size and fatty acid composition of food hoards. J. Anim. Ecol. 2005, 74, 692–700, doi:10.1111/j.1365-2656.2005.00968.x.
[63]  Van Valen, L.M. A new evolutionary law. Evol. Theory 1973, 1, 1–30.
[64]  Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 2004, 163, 192–211, doi:10.1086/381004.
[65]  Ohta, T. Population size and the rate of evolution. J. Mol. Evol. 1972, 1, 305–314, doi:10.1007/BF01653959.
[66]  Ohta, T. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Systemat. 1992, 23, 263–286.
[67]  Ohta, T.; Gillespie, J.H. Development of neutral and nearly neutral theories. Theor. Popul. Biol. 1996, 49, 128–142, doi:10.1006/tpbi.1996.0007.
[68]  Woolfit, M.; Bromham, L. Population size and molecular evolution on islands. Proc. Biol. Sci. 2005, 272, 2277–2282, doi:10.1098/rspb.2005.3217.
[69]  Bromham, L.; Leys, R. Sociality and the rate of molecular evolution. Mol. Biol. Evol. 2005, 22, 1393–1402, doi:10.1093/molbev/msi133.
[70]  Woolfit, M.; Bromham, L. Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population size. Mol. Biol. Evol. 2003, 20, 1545–1555, doi:10.1093/molbev/msg167.
[71]  Hawks, J.; Wang, E.T.; Cochran, G.M.; Harpending, H.C.; Moyzis, R.K. Recent acceleration of human adaptive evolution. Proc. Natl. Acad. Sci. USA 2007, 104, 20753–20758, doi:10.1073/pnas.0707650104.
[72]  McBride, P.; Wright, S.D.; Gillman, L.N. The effect of population size on rates and patterns of molecular evolution in New World passerines. Auckland University of Technology, Auckland, New Zealand. Unpublished work, 2013.
[73]  Bazin, E.; Glemin, S.; Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 2006, 312, 570–572, doi:10.1126/science.1122033.
[74]  Hughes, A.L. Reduced microsatellite heterozygosity in island endemics supports the role of long-term effective population size in avian microsatellite diversity. Genetica 2010, 138, 1271–1276, doi:10.1007/s10709-010-9527-z.
[75]  Stevens, M.H.H.; Sanchez, M.; Lee, J.; Finkel, S.E. Diversification rates increase with population size and resource concentration in an unstructured habitat. Genetics 2007, 177, 2243–2250, doi:10.1534/genetics.107.076869.
[76]  Gossmann, T.I.; Keightley, P.D.; Eyre-Walker, A. The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes. Genome Biol. Evol. 2012, 4, 658–667, doi:10.1093/gbe/evs027.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413