全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Econometrics  2013 

Ten Things You Should Know about the Dynamic Conditional Correlation Representation

DOI: 10.3390/econometrics1010115

Keywords: DCC representation, BEKK, GARCC, stated representation, derived model, conditional correlations, two step estimators, assumed asymptotic properties, filter

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of the paper is to discuss ten things potential users should know about the limits of the Dynamic Conditional Correlation (DCC) representation for estimating and forecasting time-varying conditional correlations. The reasons given for caution about the use of DCC include the following: DCC represents the dynamic conditional covariances of the standardized residuals, and hence does not yield dynamic conditional correlations; DCC is stated rather than derived; DCC has no moments; DCC does not have testable regularity conditions; DCC yields inconsistent two step estimators; DCC has no asymptotic properties; DCC is not a special case of Generalized Autoregressive Conditional Correlation (GARCC), which has testable regularity conditions and standard asymptotic properties; DCC is not dynamic empirically as the effect of news is typically extremely small; DCC cannot be distinguished empirically from diagonal Baba, Engle, Kraft and Kroner (BEKK) in small systems; and DCC may be a useful filter or a diagnostic check, but it is not a model.

References

[1]  Engle, R. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J. Bus. Econ. Stat.?2002, 20, 339–350, doi:10.1198/073500102288618487.
[2]  Cappiello, L.; Engle, R.F.; Sheppard, K. Asymmetric dynamics in the correlations of global equity and bond returns. J. Financ. Econ.?2006, 4, 537–572.
[3]  Bauwens, L.; Laurent, S.; Rombouts, J.V.K. Multivariate GARCH models: A survey. J. Appl. Econ.?2006, 21, 79–109, doi:10.1002/jae.842.
[4]  Silvennoinen, A.; Terasvirta, T. Multivariate GARCH Models. In Handbook of Financial Time Series; Andersen, T.G., Davis, R.A., Kreiss, J.P., Mikosch, T., Eds.; Springer: Berlin, Germany, 2009.
[5]  Lanza, A.; McAleer, M.; Manera, M. Modeling dynamic conditional correlations in WTO oil forward and futures returns. Financ. Res. Lett.?2006, 3, 114–132, doi:10.1016/j.frl.2006.01.005.
[6]  Billio, M.; Caporin, M.; Gobbo, M. Flexible dynamic conditional correlation multivariate GARCH for asset allocation. Appl. Financ. Econ. Lett.?2006, 2, 123–130, doi:10.1080/17446540500428843.
[7]  Hammoudeh, S.; Liu, T.; Chang, C.-L.; McAleer, M. Risk spillovers in oil-related CDS, stock and credit markets. Energy Econ.?2013, 36, 526–535, doi:10.1016/j.eneco.2012.10.010.
[8]  Chang, C.-L.; McAleer, M.; Tansuchat, R. Crude oil hedging strategies using dynamic multivariate GARCH. Energy Econ.?2011, 33, 912–923, doi:10.1016/j.eneco.2011.01.009.
[9]  Franses, P.H.; Hafner, C.M. A generalized dynamic conditional correlation model: Simulation and application to many assets. Econ. Rev.?2009, 28, 612–631, doi:10.1080/07474930903038834.
[10]  Kasch, M.; Caporin, M. Volatility threshold dynamic conditional correlations: An international analysis. J. Financ. Econ.?2013. in press.
[11]  Engle, R.F.; Shephard, N.; Sheppard, K. Fitting Vast Dimensional Time-varying Covariance Models. Oxford Financial Research Centre. Financial Economics Working Paper 30, 2008.
[12]  Colacito, R.; Engle, R.F.; Ghysels, E. A component model for dynamic correlations. J. Econ.?2011, 164, 45–59, doi:10.1016/j.jeconom.2011.02.013.
[13]  McAleer, M. Automated inference and learning in modeling financial volatility. Econ. Theory?2005, 21, 232–261, doi:10.1017/S0266466605050140.
[14]  Aielli, G.P. Dynamic conditional correlations: On properties and estimation. J. Bus. Econ. Stat.?2013. in press.
[15]  Tse, Y.K.; Tsui, A.K.C. A multivariate GARCH model with time-varying correlations. J. Bus. Econ. Stat.?2002, 20, 351–362, doi:10.1198/073500102288618496.
[16]  Baba, Y.; Engle, R.F.; Kraft, D.; Kroner, K.F. Multivariate Simultaneous Generalized ARCHUnpublished Manuscript. Department of Economics, University of California, San Diego, CA, USA, 1985.
[17]  Engle, R.F.; Kroner, K.F. Multivariate simultaneous generalized ARCH. Econ. Theory?1995, 11, 122–150, doi:10.1017/S0266466600009063.
[18]  Caporin, M.; McAleer, M. Scalar BEKK and indirect DCC. J. Forecast.?2008, 27, 537–549, doi:10.1002/for.1074.
[19]  RiskmetricsTM. In J.P. Morgan Technical Document, 4th ed. ed.; J.P. Morgan: New York, NY, USA, 1996.
[20]  McAleer, M.; Chan, F.; Hoti, S.; Lieberman, O. Generalized autoregressive conditional correlation. Econ. Theory?2008, 24, 1554–1583, doi:10.1017/S0266466608080614.
[21]  Engle, R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica?1982, 50, 987–1007, doi:10.2307/1912773.
[22]  Bollerslev, T. Generalised autoregressive conditional heteroscedasticity. J. Econ.?1986, 31, 307–327, doi:10.1016/0304-4076(86)90063-1.
[23]  Caporin, M.; McAleer, M. Do we really need both BEKK and DCC? A tale of two multivariate GARCH models. J. Econ. Surv.?2012, 26, 736–751, doi:10.1111/j.1467-6419.2011.00683.x.
[24]  Engle, R.F.; Sheppard, K. Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH. National Bureau of Economic Research working paper series, 2001. no. 8554.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133