全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geosciences  2013 

Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust

DOI: 10.3390/geosciences3030354

Keywords: continental growth, tectonics, turbidites, subduction, Gondwana, Damara Orogen, Lachlan Orogen, New Zealand

Full-Text   Cite this paper   Add to My Lib

Abstract:

Convergent plate margins where large turbidite fans with slivers of oceanic basement are accreted to continents represent important sites of continental crustal growth and recycling. Crust accreted in these settings is dominated by an upper layer of recycled crustal and arc detritus (turbidites) underlain by a layer of tectonically imbricated upper oceanic crust and/or thinned continental crust. When oceanic crust is converted to lower continental crust it represents a juvenile addition to the continental growth budget. This two-tiered accreted crust is often the same thickness as average continental crustal and is isostatically balanced near sea level. The Paleozoic Lachlan Orogen of eastern Australia is the archetypical example of a tubidite-dominated accretionary orogeny. The Neoproterozoic-Cambrian Damaran Orogen of SW Africa is similar to the Lachlan Orogen except that it was incorporated into Gondwana via a continent-continent collision. The Mesozoic Rangitatan Orogen of New Zealand illustrates the transition of convergent margin from a Lachlan-type to more typical accretionary wedge type orogen. The spatial and temporal variations in deformation, metamorphism, and magmatism across these orogens illustrate how large volumes of turbidite and their relict oceanic basement eventually become stable continental crust. The timing of deformation and metamorphism recorded in these rocks reflects the crustal thickening phase, whereas post-tectonic magmatism constrains the timing of chemical maturation and cratonization. Cratonization of continental crust is fostered because turbidites represent fertile sources for felsic magmatism. Recognition of similar orogens in the Proterozoic and Archean is important for the evaluation of crustal growth models, particularly for those based on detrital zircon age patterns, because crustal growth by accretion of upper oceanic crust or mafic underplating does not readily result in the addition of voluminous zircon-bearing magmas at the time of accretion. This crust only produces significant zircon when and if it partially melts, which may occur long after accretion.

References

[1]  Patchett, P.J.; Bridgwater, D. Origin of continental crust of 1.9–1.7 Ga age defined by Nd isotopes in the Ketilidian terrain of South Greenland. Contrib. Miner. Petrol. 1984, 87, 311–318, doi:10.1007/BF00381287.
[2]  Foster, D.A.; Gray, D.R. The structure and evolution of the Lachlan Fold Belt (Orogen) of eastern Australia. Annu. Rev. Earth Plan. Sci. 2000, 28, 47–80, doi:10.1146/annurev.earth.28.1.47.
[3]  Kemp, A.I.S.; Hawkesworth, C.J.; Collins, W.J.; Cray, C.M.; Blevin, P.L. Isotopic evidence for rapid growth in an extensional accretionary orogeny: The Tasmanides, eastern Australia. Earth Planet. Sci. Lett. 2009, 284, 455–466, doi:10.1016/j.epsl.2009.05.011.
[4]  Barnes, S.; Sawyer, E. An alternative model for the Damara mobile belt: Ocean crust subduction and continental convergence. Precambrian Res. 1980, 13, 297–336, doi:10.1016/0301-9268(80)90048-0.
[5]  Mortimer, N. New Zealand’s geological foundations. Gondwana Res. 2004, 7, 261–272, doi:10.1016/S1342-937X(05)70324-5.
[6]  Mortimer, N. Jurassic tectonic history of the Otago Schist, New Zealand. Tectonics 1993, 12, 237–244, doi:10.1029/92TC01563.
[7]  Veevers, J.J. Billion-year Earth History of Australia and Neighbours in Gondwanaland; GEMOC Press: Sydney, Australia, 2000.
[8]  Gray, D.R.; Foster, D.A. Regional geology: Tasman Orogen, Australia. Encycl. Geol. 2004, 1, 237–252.
[9]  Glen, R.A. The Tasmanides of eastern Australia. Geol. Soc. Lond. Spec. Publ. 2005, 246, 23–96, doi:10.1144/GSL.SP.2005.246.01.02.
[10]  Fergusson, C.L.; Coney, P.J. Implications of a Bengal Fan-type deposit in the Paleozoic Lachlan fold belt of southeastern Australia. Geology 1992, 20, 1047–1049, doi:10.1130/0091-7613(1992)020<1047:IOABFT>2.3.CO;2.
[11]  Powell, C.McA. Tectonic relationship between the late Ordovician and Late Silurian palaeogeographies of southeastern Australia. J. Geol. Soc. Aust. 1983, 30, 353–373, doi:10.1080/00167618308729262.
[12]  Vandenberg, A.H.M.; Stewart, I.R. Ordovician terranes of the southeastern Lachlan Fold Belt: Stratigraphy, structure and palaeogeographic reconstruction. Tectonophysics 1992, 214, 159–176, doi:10.1016/0040-1951(92)90195-C.
[13]  Gray, C.M.; Webb, J. Provenance of Palaeozoic turbidites in the Lachlan Orogenic Belt: Strontium isotopic evidence. Aust. J. Earth Sci. 1995, 42, 95–105, doi:10.1080/08120099508728182.
[14]  Fergusson, C.L.; Fanning, C.M. Late Ordovician stratigraphy, zircon provenance and tectonics, Lachlan Fold Belt, southeastern Australia. Aust. J. Earth Sci. 2002, 49, 423–436, doi:10.1046/j.1440-0952.2002.00929.x.
[15]  Turner, S.P.; Kelley, S.P.; VandenBerg, A.H.M.; Foden, J.; Sandiford, M.; Fl?ttmann, T. Source of the Lachlan fold belt flysch linked to convective removal of the lithospheric mantle and rapid exhumation of the Delamerian-Ross fold belt. Geology 1996, 24, 941–944, doi:10.1130/0091-7613(1996)024<0941:SOTLFB>2.3.CO;2.
[16]  Crawford, A.J.; Keays, R.R. Cambrian greenstone belts in Victoria: Marginal sea crust slices in the Lachlan Fold Belt of southeastern Australia. Earth Planet. Sci. Lett. 1978, 41, 197–208, doi:10.1016/0012-821X(78)90010-9.
[17]  Crawford, A.J.; Keays, R.R. Petrogenesis of Victorian Cambrian tholeiites and implications for the origin of associated boninites. J. Pet. 1987, 28, 1075–1109, doi:10.1093/petrology/28.6.1075.
[18]  Foster, D.A.; Gray, D.R.; Spaggiari, C.; Kamenov, G.; Bierlein, F.P. Palaeozoic Lachlan Orogen, Australia; accretion and construction of continental crust in a marginal ocean setting: Isotopic evidence from Cambrian metavolcanic rocks. Geol. Soc. Lond. Spec. Publ. 2009, 318, 329–349, doi:10.1144/SP318.12.
[19]  Gray, D.R.; Foster, D.A. Tectonic evolution of the Lachlan Orogen, southeast Australia: Historical review, data synthesis and modern perspectives. Aust. J. Earth Sci. 2004, 51, 773–817, doi:10.1111/j.1400-0952.2004.01092.x.
[20]  Spaggiari, C.V.; Gray, D.R.; Foster, D.A. Ophiolite accretion in the Lachlan Orogen, southeastern Australia. J. Struct. Geol. 2004, 6, 87–112, doi:10.1016/S0191-8141(03)00084-1.
[21]  Offler, R.; McKnight, S.; Morand, V. Tectonothermal history of the western Lachlan Fold Belt, Australia: Insights from white mica studies. J. Metamorph. Geol. 1998, 16, 531–540.
[22]  Spaggiari, C.V.; Gray, D.R.; Foster, D.A.; McKnight, S. Evolution of the boundary between the western and central Lachlan Orogen: Implications for Tasmanide tectonics. Aust. J. Earth Sci. 2003, 50, 725–749, doi:10.1111/j.1440-0952.2003.01022.x.
[23]  Fergusson, C.L. Early Palaeozoic backarc deformation in the Lachlan Fold Belt, southeastern Australia: Implications for terrane translations in eastern Gondwanaland. Geodyn. Ser. 1987, 19, 39–56, doi:10.1029/GD019p0039.
[24]  Miller, J.McL.; Gray, D.R. Subduction related deformation and the Narooma anticlinorium, eastern Lachlan Orogen. Aust. J. Earth Sci. 1997, 44, 237–251, doi:10.1080/08120099708728307.
[25]  Watson, J.M.; Gray, D.R. Character, extent and significance of broken formation for the Tabberabbera Zone, central Lachlan Orogen. Aust. J. Earth Sci. 2001, 48, 943–954, doi:10.1046/j.1440-0952.2001.00911.x.
[26]  Spaggiari, C.V.; Gray, D.R.; Foster, D.A. Blueschist metamorphism during accretion in the Lachlan Orogen, southeastern Australia. J. Metamorph. Geol. 2002, 20, 711–726, doi:10.1046/j.1525-1314.2002.00405.x.
[27]  Spaggiari, C.V.; Gray, D.R.; Foster, D.A.; Fanning, C.M. Occurrence and significance of blueschists in the southern Lachlan Orogen. Aust. J. Earth Sci. 2002, 49, 255–269, doi:10.1046/j.1440-0952.2002.00915.x.
[28]  Morand, V.J. Low-pressure regional metamorphism in the Omeo Metamorphic Complex, Victoria, Australia. J. Metamorph. Geol. 1990, 8, 1–12, doi:10.1111/j.1525-1314.1990.tb00453.x.
[29]  Collins, W.J.; Hobbs, B.E. What caused the Early Silurian change from mafic to silicic magmatism in the eastern Lachlan Fold Belt? Aust. J. Earth Sci. 2001, 48, 25–41, doi:10.1046/j.1440-0952.2001.00837.x.
[30]  Gray, D.R.; Foster, D.A.; Maas, R.; Spaggiari, C.V.; Gregory, R.T.; Goscombe, B.D.; Hoffmann, K.H. Continental growth and recycling by accretion of deformed turbidte fans and remnant ocean basins: Examples from Neoproterozoic and Phanerozoic orogens. Geol. Soc. Am. Mem. 2007, 200, 63–92, doi:10.1130/2007.1200(05).
[31]  Foster, D.A.; Gray, D.R.; Bucher, M. Chronology of deformation within the turbidite-dominated Lachlan orogen: Implications for the tectonic evolution of eastern Australia and Gondwana. Tectonics 1999, 18, 452–485, doi:10.1029/1998TC900031.
[32]  Spaggiari, C.V.; Gray, D.R.; Foster, D.A. Tethyan and Cordilleran-Type Ophiolites of Eastern Australia: implications for the evolution of the Tasmanides. Geol. Soc. Lond. Spec. Publ. 2003, 218, 517–539, doi:10.1144/GSL.SP.2003.218.01.27.
[33]  White, A.J.R.; Chappell, B.W. Granitoid types and their distribution in the Lachlan Fold Belt, SE Australia. Geol. Soc. Am. Mem. 1983, 159, 21–34.
[34]  Chappell, B.W.; White, A.J.R.; Hine, R. Granite provinces and basement terranes in the Lachlan Fold Belt, southeastern Australia. Aust. J. Earth Sci. 1988, 35, 505–521, doi:10.1080/08120098808729466.
[35]  Hine, R.; Williams, I.S.; Chappell, B.W.; White, A.J.R. Contrasts between I- and S-type granitoids of the Kosciusko Batholith. J. Geol. Soc. Aust. 1978, 25, 219–234, doi:10.1080/00167617808729029.
[36]  Keay, S.; Steele, D.; Compston, W. Identifying granite sources by SHRIMP U–Pb zircon geochronology: An application to the Lachlan Fold Belt. Contrib. Miner. Petrol. 2000, 137, 323–341, doi:10.1007/s004100050553.
[37]  Glen, R.A.; Walshe, J.L.; Barron, L.M.; Watkins, J.J. Ordovician convergent margin volcanism and tectonism in the Lachlan sector of east Gondwana. Geology 1998, 26, 751–754, doi:10.1130/0091-7613(1998)026<0751:OCMVAT>2.3.CO;2.
[38]  Glen, R.A.; Crawford, A.J.; Percival, I.G.; Barron, L.M. Early Ordovician development of the Macquarie Arc, Lachlan Orogen, New South Wales. Aust. J. Earth Sci. 2007, 54, 167–179, doi:10.1080/08120090601146797.
[39]  Price, R.C.; Brown, W.M.; Woolard, C.A. The geology, geochemistry and origin of late-Silurian, high-Si igneous rocks of the upper Murray Valley, NE Victoria. J. Geol. Soc. Austr. 1983, 30, 443–459, doi:10.1080/00167618308729269.
[40]  Phillips, G.N.; Wall, V.J.; Clemens, J.C. Petrology of the Strathbogie Batholith—A cordierite-bearing granite. Can. Miner. 1981, 19, 47–63.
[41]  Clemens, J.D.; Wall, V.J. Origin and evolution of a peraluminous silicic ignimbrite suite: The Violet Town Volcanics. Contrib. Miner. Petrol. 1984, 88, 354–371, doi:10.1007/BF00376761.
[42]  Rossiter, A.G. Granitic rocks of the Lachlan Gold Belt in Victoria. Geol. Soc. Aust. Spec. Publ. 2003, 23, 217–237.
[43]  Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Miner. Petrol. 1982, 80, 189–200, doi:10.1007/BF00374895.
[44]  McCulloch, M.T.; Chappell, B.W. Nd isotopic characteristics of S- and I-type granites. Earth Planet. Sci. Lett. 1982, 58, 51–64, doi:10.1016/0012-821X(82)90102-9.
[45]  Keay, S.; Collins, W.J.; McCulloch, M.T. A three-component isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia. Geology 1997, 25, 307–310, doi:10.1130/0091-7613(1997)025<0307:ATCSNI>2.3.CO;2.
[46]  Adams, C.J.; Pankhurst, R.J.; Maas, R.; Millar, I.L. Nd and Sr isotopic signatures of metasedimentary terranes around the South Pacific margin, and implications for their provenance. Geol. Soc. Lond. Spec. Publ. 2005, 246, 113–142, doi:10.1144/GSL.SP.2005.246.01.04.
[47]  Kemp, A.I.S.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Gray, C.M. Magmatic and crustal differentiation history of granitic rocks from Hf–O Isotopes in zircon. Science 2007, 315, 980–983, doi:10.1126/science.1136154.
[48]  Williams, I.S. Some observations on the use of zircon U–Pb geochronology in the study of granitic rocks. Trans. R. Soc. Ed. 1992, 83, 447–458, doi:10.1017/S0263593300008129.
[49]  Bierlein, F.P.; Hughes, M.; Dunphy, J.; McKnight, S.; Reynolds, P.; Waldron, H. Tectonic and economic implications of trace element, 40Ar/39Ar and Sm–Nd data from mafic dykes associated with orogenic gold mineralisation in central Victoria, Australia. Lithos 2001, 18, 1–31.
[50]  Maas, R.; Nicholls, I.A.; Greig, A.; Nemchin, A. U–Pb zircon studies of mid-crustal metasedimentary enclaves from the S-type Deddick Granodiorite, Lachlan Fold Belt, SE Australia. J. Pet. 2001, 42, 1429–1448, doi:10.1093/petrology/42.8.1429.
[51]  Soesoo, A.; Bons, P.D.; Gray, D.R.; Foster, D.A. Divergent double subduction: Tectonic and petrologic consequences. Geology 1997, 25, 755–758, doi:10.1130/0091-7613(1997)025<0755:DDSTAP>2.3.CO;2.
[52]  Soesoo, A.; Nicholls, I.A. Mafic rocks spatially associated with Devonian felsic intrusions of the southern Lachlan Fold Belt: A possible mantle contribution to crustal evolution processes. Aust. J. Earth Sci. 1999, 46, 725–734.
[53]  Gray, C.M. An isotopic mixing model for the origin of granitic rocks in southeastern Australia. Earth Plan. Sci. Lett. 1984, 70, 47–60, doi:10.1016/0012-821X(84)90208-5.
[54]  Gray, C.M. A strontium isotopic traverse across the granitic rocks of southeastern Australia: Petrogenetic and tectonic implications. Aust. J. Earth Sci. 1990, 37, 331–349, doi:10.1080/08120099008727931.
[55]  Collins, W.J. Lachlan Fold Belt granitoids: Products of three-component mixing. Trans. R. Soc. Ed. Earth Sci. 1996, 87, 171–182, doi:10.1017/S0263593300006581.
[56]  Collins, W.J. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: Implications for crustal architecture and tectonic models. Aust. J. Earth Sci. 1998, 45, 483–500, doi:10.1080/08120099808728406.
[57]  Foster, D.A.; Gray, D.R.; Spaggiari, C.V. Timing of subduction and exhumation along the Cambrian East Gondwana margin, and the formation of Paleozoic back-arc basins. Geol. Soc. Am. Bull. 2005, 117, 105–116, doi:10.1130/B25481.1.
[58]  Foster, D.A.; Gray, D.R. Paleozoic crustal growth, structure, strain rate, and metallogeny in the Lachlan Orogen, Eastern Australia. Ariz Geol. Soc. Dig. 2008, 22, 213–225.
[59]  Gray, D.R.; Foster, D.A.; Bucher, M. Recognition and definition of orogenic events in the Lachlan Fold Belt. Aust. J. Earth Sci. 1997, 44, 489–581, doi:10.1080/08120099708728328.
[60]  Spaggiari, C.V.; Gray, D.R.; Foster, D.A. Lachlan Orogen subduction-accretion systematics revisited. Austr. J. Earth Sci. 2004, 51, 549–553, doi:10.1111/j.1400-0952.2004.01073.x.
[61]  Collins, W.J. Nature of extensional accretionary orogens. Tectonics 2002, 21, 1024–1036, doi:10.1029/2000TC001272.
[62]  Coombs, D.S.; Landis, C.A.; Norris, R.J.; Sinton, J.M.; Borns, D.J.; Craw, D. The Dun Mountain Ophiolite belt, New Zealand, its tectonic setting, constitution, and origin, with special reference to the southern portion. Am. J. Sci. 1976, 276, 561–603, doi:10.2475/ajs.276.5.561.
[63]  Bradshaw, J.D. Cretaceous geotectonic patterns in the New Zealand region. Tectonics 1989, 8, 803–820, doi:10.1029/TC008i004p00803.
[64]  Adams, C.J.; Barley, M.E.; Fletcher, I.R.; Pickard, A.L. Evidence from U–Pb zircon and 40Ar/39Ar muscovite detrital mineral ages in metasandstones for movement of the Torlesse suspect terrane around the eastern margin of Gondwanaland. Terra Nova 1998, 10, 183–189, doi:10.1046/j.1365-3121.1998.00186.x.
[65]  Adams, C.J.; Cambell, H.J.; Griffin, W.L. Provenance comparisons of Permian to Jurassic tectostratigraphic terranes in New Zealand: Perspectives from detrital zircon age patterns. Geol. Mag. 2007, 144, 701–729, doi:10.1017/S0016756807003469.
[66]  Gray, D.R.; Foster, D.A. 40Ar/39Ar thermochronologic constraints on deformation, metamorphism and cooling/exhumation of a Mesozoic accretionary wedge, Otago Schist, New Zealand. Tectonophysics 2004, 385, 181–210, doi:10.1016/j.tecto.2004.05.001.
[67]  Mortimer, N.; Davey, F.J.; Melhush, A.; Yu, J.; Godfrey, N.J. Geological interpretation of a deep crustal seismic reflection profile across the eastern Province and Median Batholith, New Zealand: Crustal architecture of an extended Phanerozoic convergent orogeny. N. Z. J. Geol. Geophys. 2003, 45, 349–363.
[68]  Cawood, P.A. Stratigraphic and structural relations of strata enclosing the Dun Mountain ophiolite belt in the Arthurton-Clinton region, Southland. N. Z. J. Geol. Geophys. 1987, 30, 19–36.
[69]  Norris, R.J.; Craw, D. Aspiring terrane: an oceanic assemblage from New Zealand and its implications for Mesozoic terrane accretion in the southwest Pacific. Am. Geophys. Union Geodyn. Ser. 1987, 19, 169–177.
[70]  Mortimer, N. Metamorphic discontinuities in orogenic belts: Example of garnet–biotite–albite zone in the Otago Schist, New Zealand. Int. J. Earth Sci. 2000, 89, 295–306, doi:10.1007/s005310000086.
[71]  Yardley, B.W.D. The early metamorphic history of the Haast Schists and related rocks of New Zealand. Contrib. Miner. Petrol. 1982, 81, 317–327, doi:10.1007/BF00371686.
[72]  Mortimer, N.; Tulloch, A.J.; Spark, R.N.; Walker, N.W.; Ladley, E.; Allibone, A.; Kimbrough, D.L. Overview of the Median Batholith, New Zealand: A new interpretation of the geology of the Median Tectonic Zone and adjacent rocks. J. Afr. Earth Sci. 1999, 29, 259–270.
[73]  Kimbrough, D.L.; Tulloch, A.J.; Geary, E.; Coombs, D.S.; Mattinson, J.M. Isotopic ages from the Nelson region of the South Island, New Zealand: Crustal structure and definition of the Median Tectonic Zone. Tectonophysics 1993, 225, 433–448, doi:10.1016/0040-1951(93)90308-7.
[74]  Kimbrough, D.L.; Tulloch, A.J.; Coombs, D.S.; Landis, C.A.; Johnston, M.R.; Mattison, J.M. Uranium-lead ages from the Median Tectonic Zone, South Island New Zealand. N. Z. J. Geol. Geophys. 1994, 37, 393–419, doi:10.1080/00288306.1994.9514630.
[75]  Muir, R.J.; Ireland, T.R.; Weaver, S.D.; Bradshaw, J.D.; Evans, J.A.; Eby, G.N.; Shelley, D. Geochronology and geochemistry of a Mesozoic magmatic arc system, Fiordland, New Zealand. J. Geol. Soc. Lond. 1998, 155, 1037–1053, doi:10.1144/gsjgs.155.6.1037.
[76]  Mortimer, N.; Gans, P.; Calvert, A.; Walker, N. Geology and thermochronometry of the east edge of the Median Batholith (Median Tectonic Zone): A new perspective on Permian to Cretaceous crustal growth of New Zealand. Island Arc 1999, 8, 404–425, doi:10.1046/j.1440-1738.1999.00249.x.
[77]  McCulloch, M.T.; Bradshaw, J.Y.; Taylor, S.R. Sm–Nd and Rb–Sr isotopic and geochemical systematics in Phanerozoic granulites from Fiordland, southwest New Zealand. Contrib. Miner. Petrol. 1987, 97, 183–195, doi:10.1007/BF00371238.
[78]  Muir, R.J.; Weaver, S.D.; Bradshaw, J.D.; Eby, G.N.; Evans, J.A. The Cretaceous Separation Point Batholith, New Zealand. Granitoid magmas formed by melting of mafic lithosphere. J. Geol. Soc. Lond. 1995, 152, 689–701.
[79]  Klepeis, K.A.; Clarke, G.L.; Rushmer, T. Magma transport and coupling between deformation and magmatism in the continental lithosphere. GSA Today 2003, 13, 4–11, doi:10.1130/1052-5173(2003)013<0004:MTACBD>2.0.CO;2.
[80]  Wandres, A.M.; Bradshaw, J.D. New Zealand tectonostratigraphy and implications from conglomeratic rocks for the configuration of the SW Pacific margin of Gondwana. Geol. Soc. Lond. Spec. Publ. 2005, 246, 179–216, doi:10.1144/GSL.SP.2005.246.01.06.
[81]  Tulloch, A.J. Batholiths, plutons and suites: Nomenclature for granitoid rocks of Westland-Nelson, New Zealand. N. Z. J. Geol. Geophys. 1988, 31, 505–509, doi:10.1080/00288306.1988.10422147.
[82]  Waight, T.E.; Weaver, S.D.; Muir, J.; Maas, R.; Eby, N. The Hohonu Batholith of North Westland, New Zealand: Granitoid compositions controlled by source H2O contents and generated during tectonic transition. Contrib. Miner. Petrol. 1998, 130, 225–239.
[83]  Tulloch, A.J.; Kimbrough, D.L. The Paparoa Metamorphic Core Complex, New Zealand: Cretaceous extension associated with fragmentation of the Pacific margin of Gondwana. Tectonics 1989, 8, 1217–1234, doi:10.1029/TC008i006p01217.
[84]  Waight, T.E.; Weaver, S.D.; Muir, R.J. Mid-Cretaceous granitic magmatism dating the transition from subduction to extension in southern New Zealand: A chemical and tectonic synthesis. Lithos 1998, 45, 469–482, doi:10.1016/S0024-4937(98)00045-0.
[85]  Roser, B.; Cooper, A.F. Geochemistry and terrane affiliation of Haast Schist from the western Southern Alps, New Zealand. N. Z. J. Geol. Geophys. 1990, 94, 635–650.
[86]  Prave, A.R. Tale of three cratons: Tectostratigraphic anatomy of the Damara Orogen in northwestern Namibia and the assembly of Gondwana. Geology 1996, 24, 1115–1118, doi:10.1130/0091-7613(1996)024<1115:TOTCTA>2.3.CO;2.
[87]  Martin, H.; Porada, H. The intracratonic branch of the Damara Orogen in South West Africa: I. Discussion of Geodynamic models. Precambrian Res. 1977, 5, 311–338, doi:10.1016/0301-9268(77)90039-0.
[88]  Hoffmann, K.-H. Lithostratigraphy and facies of the Swakop Group of the southern Damara belt, SWA/Namibia. Geol. Soc. S. Afr. Spec. Publ. 1983, 11, 43–63.
[89]  Miller, R.McL. The Pan-African Damara orogen of South West Namibia/Africa. Geol. Soc. S. Afr. Spec. Publ. 1983, 11, 431–515.
[90]  Kukla, P.A.; Stanistreet, I.G. Record of the Damaran Khomas Hochland accretionary prism in central Namibia: Refutation of an “ensialic” origin of a Late Proterozoic orogenic belt. Geology 1991, 19, 473–476.
[91]  Gray, D.R.; Foster, D.A.; Goscombe, B.; Passchier, C.W.; Trouw, R.A.J. 40Ar/39Ar thermochronology of the Pan-African Damara Orogen, Namibia with implications for tectonothermal and geodynamic evolution. Precambrian Res. 2006, 150, 49–72, doi:10.1016/j.precamres.2006.07.003.
[92]  Foster, D.A.; Goscombe, B.D.; Newstead, B.L.; Muvangua, E.; Mueller, P.A.; Mapani, B. Rodinia-Gondwana supercontinent cycle refined by detrital zircons from the Damara Orogen. In Proceedings of 2012 Geological Society of America Annual Meeting, Charlotte, NC, USA, 4–7 November 2012; p. 175.
[93]  Barnes, S. Pan-African serpentinites in central south west Africa/Namibia and the chemical classification of serpentinites. Geol. Soc. S. Afr. Spec. Publ. 1983, 11, 147–155.
[94]  Schmidt, A.; Wedepohl, K.H. Chemical composition and genetic relations of the Matchless Amphibolite (Damara Orogenic Belt). Geol. Soc. S. Afr. Spec. Publ. 1983, 11, 139–145.
[95]  Killick, A.M. The Matchless Belt and associated sulphide mineral deposits, Damara Orogen, Namibia. Commun. Geol. Surv. Namib. 2000, 12, 73–80.
[96]  Kisters, A.F.M.; Jordaan, L.S.; Neumaier, K. Thrust-related dome structures in the Karibib district and the origin of orthogonal fabric domains in the south Central Zone of the Pan-African Damara belt, Namibia. Precambrian Res. 2004, 133, 283–303, doi:10.1016/j.precamres.2004.05.001.
[97]  Jacob, R.E.; Moore, J.M.; Armstrong, R.A. Zircon and titanite age determinations from igneous rocks in the Karibib District, Namibia; implications for Navachab vein-style gold mineralization. Commun. Geol. Surv. Namib. 2000, 12, 157–166.
[98]  De Kock, G.S.; Eglington, B.; Armstrong, R.A.; Hermer, R.E.; Walraven, F. U–Pb and Pb–Pb ages of the Naauwpoort Rhyolite, Kawakeup leptite and Okongava Diorite: Implications for the onset of rifting and of orogenesis in the Damara Belt, Namibia. Commun. Geol. Surv. Namib. 2000, 12, 81–88.
[99]  Jung, S.; Mezger, K. U–Pb garnet chronometry in high-grade rocks; case studies from the central Damara Orogen (Namibia) and implications for the interpretation of Sm–Nd garnet ages and the role of high U–Th inclusions. Contrib. Miner. Petrol. 2003, 146, 382–396.
[100]  Jung, S.; Mezger, K. Petrology of basement-dominated terranes. I: Regional metamorphic T-t path from U–Pb monazite and Sm–Nd garnet geochronology (central Damara Orogen, Namibia). Chem. Geol. 2003, 198, 223–247.
[101]  Schmitt, R.S.; Trouw, R.A.J.; Passchier, C.W.; Medeiros, S.R.; Armstrong, R. 530 Ma syntectonic syenites and granites in NW Namibia—Their relation with collision along the junction of the Damara and Kaoko belts. Gondwana Res. 2012, 21, 362–377.
[102]  Longridge, L.; Gibson, R.L.; Kinnaird, J.A.; Armstrong, R.A. Constraining the timing of deformation in the southwestern Central Zone of the Damara Belt, Namibia. Geol. Soc. Lond. Spec. Publ. 2011, 357, 107–135.
[103]  Kasch, K.W.; Regional, P.-T. variations in the Damara Orogen with particular reference to early high-pressure metamorphism along the southern margin. Geol. Soc. S. Afr. Spec. Publ. 1983, 11, 243–253.
[104]  Kukla, C. Strontium Isotope Heterogeneities in Amphibolite Facies, Banded Metasediments—A Case Study from the Late Proterozoic Kuiseb Formation of the Southern Damara Orogen, Central Namibia; Ministry of Mines and Energy, Geological Survey of Namibia: Windhoek, Namibia, 1993; p. 39.
[105]  Coward, M.P. The tectonic history of the Damaran Belt. Geol. Soc. S. Afr. Spec. Publ. 1983, 11, 409–421.
[106]  Swart, R. The Sedimentology of the Zerrissene Turbidite System, Damara Orogen, Namibia; Ministry of Mines and Energy, Geological Survey of Namibia: Windhoek, Namibia, 1992.
[107]  Passchier, C.W.; Trouw, R.A.; Ribeiro, A.; Pacuillo, F.V.P. Tectonic evolution of the southern Kaoko Belt, Namibia. J. Afr. Earth Sci. 2002, 35, 61–75.
[108]  Goscombe, B.; Gray, D.R.; Hand, M. Variation in metamorphic style along the northern margin of the Damara Orogen, Namibia. J. Pet. 2004, 45, 1261–1295.
[109]  Jung, S. High-temperature, mid-pressure clockwise P-T paths and melting in the development of regional migmatites: The role of crustal thickening and repeated plutonism. Geol. J. 2000, 35, 345–359.
[110]  Masberg, P. Garnet-growth in medium-pressure granulite facies metapelites from the central Damara Orogen: Igneous versus metamorphic history. Commun. Geol. Surv. Namib. 2000, 12, 115–124.
[111]  McDermott, F.; Harris, N.B.W.; Hawkesworth, C.J. Geochemical constraints on crustal anatexis: A case study from the Pan-African granitoids of Namibia. Contrib. Miner. Petrol. 1996, 123, 406–423.
[112]  Haack, U.; Hoefs, J.; Gohn, E. Constraints on the origin of Damaran granites by Rb/Sr and δ18O data. Contrib. Miner. Petrol. 1982, 79, 279–289.
[113]  Jung, S.; Mezger, K.; Hoernes, S. Trace element and isotopic (Sr, Nd, Pb, O) arguments for a mid-crustal origin of Pan-African garnet-bearing S-type granites from the Damara orogen (Namibia). Precambrian Res. 2001, 110, 325–355.
[114]  Jung, S.; Mezger, K.; Hoernes, S. Petrology of basement-dominated terranes. II: Contrasting isotopic (Sr, Nd, Pb, O) signatures of basement-derived granites and constraints on the source region of granite (Damara orogen, Namibia). Chem. Geol. 2003, 199, 1–28.
[115]  McDermott, F.; Hawkesworth, C.J. Intracrustal recycling and upper-mantle evolution: A case study from the Pan-African Damara mobile belt, central Namibia. Chem. Geol. 1990, 83, 263–280.
[116]  Jung, S.; Hoernes, S.; Mezger, K. Geochronology and petrogenesis of Pan-African syn-tectonic S-type and post-tectonic A-type granite (Namibia)—Products of melting of crustal sources, fractional crystallization and wall rock entrainment. Lithos 2000, 50, 259–287.
[117]  Jung, S.; Mezger, K.; Hoernes, S. Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites—A major and trace element and Nd–Sr–Pb–O isotope study from the Proterozoic Damara Belt, Namibia. Lithos 1998, 45, 147–175.
[118]  McDermott, F.; Harri, N.B.W.; Hawkesworth, C.J. Geochemical constraints on the petrogenesis of Pan-African A-type granites in the Damara Belt, Namibia. Commun. Geol. Surv. Namib. 2000, 12, 139–148.
[119]  Hawkesworth, C.J.; Kramers, J.D.; Miller, R.M.G. Old model Nd ages in Namibian Pan-African rocks. Nature 1981, 289, 278–282.
[120]  Jung, S.; Hoernes, S.; Mezger, K. Synorogenic melting of mafic lower crust; constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara Orogen, Namibia). Contrib. Miner. Petrol. 2002, 143, 551–566.
[121]  Van de Flierdt, T.; Hoernes, S.; Jung, S.; Masberg, P.; Hoffer, E.; Schaltegger, U.; Friedrichsen, H. Lower crustal melting and the role of open-system processes in the generation of syn-orogenic quartz diorite-granite-leucogranite associations: constraints from Sr–Nd–O isotopes from the Bandombaai Complex, Namibia. Lithos 2003, 67, 205–226.
[122]  Jung, S.; Masberg, P.; Mihm, D.; Hoernes, S. Partial melting of diverse crustal sources—Constraints from Sr–Nd–O isotopic compositions of quartz diorite-granodiorite-leucogranite associations (Kaoko Belt, Namibia). Lithos 2009, 111, 236–251.
[123]  Jung, S.; Mezger, K.; Hoernes, S. Geochemical and isotopic studies of syenites from the Proterozoic Damara Belt (Namibia): Implications for the origin of syenites. Miner. Mag. 1998, 62, 729–730.
[124]  Haack, U.; Gohn, E.; Hartmann, O. Radiogenic heat generation in Damaran rocks. Geol. Surv. S. Afr. Spec. Publ. 1983, 11, 225–232.
[125]  Gray, D.R.; Foster, D.A.; Meert, J.G.; Goscombe, B.D; Armstrong, R.; Trouw, R.A.J; Passchier, C.W. A Damara Orogen perspective on the assembly of southwestern Gondwana. Geol. Soc. Lond. Spec. Publ. 2008, 294, 257–278.
[126]  Hoffman, P.F.; Hawkins, D.P.; Isachsen, C.E.; Bowring, S.A. Precise U–Pb zircon ages for early Damaran magmatism in the Summas Mountains and Welwitschia Inlier, northern Damara belt, Namibia. Commun. Geol. Sur. Namib. 1996, 11, 47–52.
[127]  De Kock, G. Forearc basin evolution in the Pan-African Damara Belt, central Namibia: The Hureb Formation of the Khomas Zone. Precambrian Res. 1992, 57, 169–194.
[128]  Maloof, A.C. Superposed folding at the junction of the inland and coastal belts, Damara Orogen, Namibia. Commun. Geol. Sur. Namib. 2000, 12, 89–98.
[129]  Hawkesworth, C.J.; Gledhill, A.R.; Roddick, J.C.; Miller, R.McG.; Kr?ner, A. Rb–Sr and 40Ar/39Ar studies bearing on models for the thermal evolution of the Damara Belt, Namibia. Geol. Soc. S. Afr. Spec. Publ. 1983, 11, 323–338.
[130]  Kr?ner, A. Rb–Sr geochronology and tectonic evolution of the Pan African belt of Namibia, southwestern Africa. Am. J. Sci. 1982, 282, 1471–1507.
[131]  John, T.; Schenk, V. Partial eclogitisation of gabbroic rocks in a late Precambrian subduction zone (Zambia); prograde metamorphism triggered by fluid infiltration. Contrib. Miner. Petrol. 2003, 146, 174–191.
[132]  John, T.; Schenk, V.; Haase, K.; Scherer, E.; Tembo, F. Evidence for a Neoproterozoic ocean in south-central Africa from mid-oceanic-ridge-type geochemical signatures and pressure-temperature estimates of Zambian eclogites. Geology 2003, 31, 243–246.
[133]  Moore, D.H.; Betts, P.G.; Hall, H. Towards understanding the early Gondwana margin in southeastern Australia. Gondwana Res. 2013, 23, 1581–1598.
[134]  Fuis, G.S.; Plfker, G. Evolution of deep structure along the Trans-Alaska Crustal Transect, Chugach Mountains and Copper River Basin, Southern Alaska. J. Geophys. Res. 1991, 96, 4229–4253.
[135]  Finzel, E.S.; Trop, J.M.; Ridgeway, K.D.; Enkelmann, E. Upper plate proxies for flat-slap subduction processes in southern Alaska. Earth Planet. Sci. Lett. 2011, 303, 348–360.
[136]  Festa, A.; Dilek, Y.; Pini, G.A.; Codegone, G.; Ogatae, K. Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formation: redefining and classifying mélanges. Tectonophysics 2012, 568–569, 7–24.
[137]  Gray, D.R.; Gregory, R.T.; Durney, D.W. Rock-Buffered fluid-rock interaction in deformed quartz-rich turbidite sequences, eastern Australia. J. Geophys. Res. 1991, 96, 19681–19704.
[138]  Gray, D.R.; Foster, D.A. Character and kinematics of faults within the turbidite-dominated Lachlan Orogen: Implications for tectonic evolution of eastern Australia. J. Struct. Geol. 1998, 20, 1691–1720.
[139]  Kimbrough, D.L.; Mattison, J.M.; Coombs, D.S.; Landis, C.A.; Johnston, M.R. Uranium-lead ages for the Dun Mountain Ophiolite belt and Brook Street terrane, South Island, New Zealan. Geol. Soc. Am. B 1992, 104, 429–443.
[140]  Lundberg, N.; Reed, D.L. Continental margin tectonics: Forearc process. Rev. Geophys. 1991, 29, 794–806.
[141]  Von Huene, R.; Scholl, D.W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 1991, 29, 279–316, doi:10.1029/91RG00969.
[142]  Richards, S.W.; Collins, W.J. The Cooma metamorphic complex, a low-P, high-T (LPHT) regional aureole beneath the Murrumbidgee batholith. J. Met. Geol. 2002, 20, 119–134.
[143]  O’Halloran, G.L.; Rey, P. Isostatic constraints on the central Victorian lower crust: implications for the tectonic evolution of the Lachlan fold belt. Aust. J. Earth Sci. 1999, 46, 633–639, doi:10.1046/j.1440-0952.1999.00733.x.
[144]  Busby, C. Continental growth at convergent margins facing large ocean basins: A case study from Mesozoic convergent-margin basins of Baja California, Mexico. Tectonophys 2004, 392, 241–277, doi:10.1016/j.tecto.2004.04.017.
[145]  Ingersoll, R.V.; Dickinson, W.R.; Graham, S.A. Remnant-ocean submarine fans: Largest sedimentary systems on earth. Geol. Soc. Am. Spec. Publ. 2003, 370, 191–208.
[146]  Clemens, J.D.; Vielzeuf, D. Constraints on melting and magma production in the crust. Earth Planet. Sci. Lett. 1987, 86, 287–306, doi:10.1016/0012-821X(87)90227-5.
[147]  Condie, K.C.; Bickford, M.E.; Aster, R.C.; Belousova, E.; Scholl, D.W. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geol. Soc. Am. Bull. 2011, 123, 951–957, doi:10.1130/B30344.1.
[148]  Voice, P.J.; Kowalewski, M.; Eriksson, K.A. Quantifying the timing and rate of crustal evolution: Global compilation of radiometrically dated detrital zircon grains. J. Geol. 2011, 119, 109–126, doi:10.1086/658295.
[149]  Kemp, A.I.S.; Hawkesworth, C.J.; Paterson, B.A.; Kinny, P.D. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 2006, 439, 580–583, doi:10.1038/nature04505.
[150]  Belousova, E.A.; Kostitsyn, Y.A.; Griffin, W.L.; Begg, G.C.; O’Reilly, S.Y.; Pearson, N.J. The growth of the continental crust: Constraints from zircon Hf-isotopic data. Lithos 2010, 119, 457–466, doi:10.1016/j.lithos.2010.07.024.
[151]  Iizuka, T.; Komiya, T.; Rino, S.; Maruyama, S.; Hirata, T. Detrital zircon evidence for Hf-isotopic evolution of granitoid crust and continental growth. Geochem. Cosmochim. Acta 2012, 74, 2450–2472.
[152]  Foster, D.A.; Mueller, P.A.; Heatherington, A.; Gifford, J.N.; Kalakay, T.J. Lu–Hf systematics of magmatic zircons reveal a Proterozoic crustal boundary under the Cretaceous Pioneer batholith, Montana. Lithos 2012, 142–143, 216–225.
[153]  Foster, D.A.; Mueller, P.A.; Goscombe, B.D.; Gray, D.R. Accreted Turbidite Fans and Remnant Ocean Basins in Phanerozoic Orogens: A Template for a Significant Precambrian Crustal Growth and Recycling Process. In Archean Earth and Early Life; Dilek, Y., Furnes, H., Eds.; Springer: New York, NY, USA, 2013. in press.
[154]  Karlstrom, K.E.; Bowring, S.A. Early Proterozoic orogeny assembly of tectonostratigraphic terranes in southwestern North America. J. Geol. 1988, 96, 561–576.
[155]  Bickford, M.E.; Hill, B.M. Does the arc accretion model adequately explain the Paleoproterozoic evolution of southern Laurentia? An expanded interpretation. Geology 2007, 35, 167–170, doi:10.1130/G23174A.1.
[156]  Condie, K.C. Preservation and recycling of crust during accretionary and collisional phases of Proterozoic orogens: A bumpy road from Nuna to Rodinia. Geociences 2013, 3, 240–261, doi:10.3390/geosciences3020240.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133