全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geosciences  2013 

Provenance of Late Paleozoic-Mesozoic Sandstones, Taimyr Peninsula, the Arctic

DOI: 10.3390/geosciences3030502

Keywords: provenance, heavy minerals, detrital zircons, Uralian Orogen, Amerasian Basin

Full-Text   Cite this paper   Add to My Lib

Abstract:

The sedimentary and provenance characteristics of seven Permo-Carboniferous and two early Cretaceous samples from the Taimyr Peninsula provide information about the latest evolution of Uralian orogeny and the opening of the Amerasian Basin. The Permo-Carboniferous samples have a mixed provenance of recycled and first cycle sediment, sourced from metamorphic and igneous terranes. U-Pb detrital zircon ages represent a mixture of Precambrian-Paleozoic grains with euhedral, penecontemporaneous late Carboniferous and Permian grains consistent with derivation from the Uralian Orogen, plus additional Timanian and Caledonian material presumably derived from Baltica. Differences between the late Permian sample and the other Carboniferous and early Permian samples are interpreted to reflect the final collisional stage of Uralian orogeny. Early Cretaceous sediments deposited at the time of the Amerasian Basin opening preserve a mixed provenance of mainly first cycle metamorphic and igneous source material, as well as an unstable heavy mineral assemblage dominated by staurolite, suggesting local derivation. Detrital zircon ages fall almost exclusively into one late Permian-early Triassic cluster, indicating a Siberia Trap-related magmatic source. The detrital zircon age spectra support a passive margin setting for Taimyr during the opening of the Amerasian Basin in the early Cretaceous.

References

[1]  Zonenshain, L.; Korinevsky, V.; Kazmin, V.; Pechersky, D.; Khain, V.; Matveenkov, V. Plate tectonic model of the South Urals development. Tectonophysics 1984, 109, 95–135, doi:10.1016/0040-1951(84)90173-2.
[2]  Hamilton, W. The Uralides and the motion of the Russian and Siberian platforms. Geol. Soc. Am. Bull. 1970, 81, 2553–2576, doi:10.1130/0016-7606(1970)81[2553:TUATMO]2.0.CO;2.
[3]  Brown, D.; Spadea, P.; Puchkov, V.; Alvarez-Marron, J.; Herrington, R.; Willner, A.P.; Hetzel, R.; Gorozhanina, Y.; Juhlin, C. Arc–continent collision in the Southern Urals. Earth Sci. Rev. 2006, 79, 261–287, doi:10.1016/j.earscirev.2006.08.003.
[4]  Shipilov, E.; Vernikovsky, V. The Svalbard–Kara plates junction: Structure and geodynamic history. Russ. Geol. Geophys. 2010, 51, 58–71, doi:10.1016/j.rgg.2009.12.005.
[5]  Miller, E.L.; Soloviev, A.V.; Prokopiev, A.V.; Toro, J.; Harris, D.; Kuzmichev, A.B.; Gehrels, G.E. Triassic river systems and the paleo-Pacific margin of northwestern Pangea. Gondwana Res. 2012, 23, 1631–1645.
[6]  Nikishin, A.; Ziegler, P.; Stephenson, R.; Cloetingh, S.; Furne, A.; Fokin, P.; Ershov, A.; Bolotov, S.; Korotaev, M.; Alekseev, A. Late Precambrian to Triassic history of the East European Craton: Dynamics of sedimentary basin evolution. Tectonophysics 1996, 268, 23–63, doi:10.1016/S0040-1951(96)00228-4.
[7]  Lawver, L.A.; Grantz, A.; Gahagan, L.M. Plate kinematic evolution of the present Arctic region since the Ordovician. Geol. Soc. Am. Spec. Pap. 2002, 360, 333–358.
[8]  Drachev, S.S. Tectonic setting, structure and petroleum geology of the Siberian Arctic offshore sedimentary basins. Geol. Soc. Lond. Mem. 2011, 35, 369–394, doi:10.1144/M35.25.
[9]  Pease, V. Eurasian orogens and Arctic tectonics: An overview. Geol. Soc. Lond. Mem. 2011, 35, 311–324, doi:10.1144/M35.20.
[10]  Otto, S.; Bailey, R. Tectonic evolution of the northern Ural Orogen. J. Geol. Soc. 1995, 152, 903–906, doi:10.1144/GSL.JGS.1995.152.01.03.
[11]  Korago, E.A.; Kovaleva, G.N.; Lopatin, B.G.; Orgo, V.V. The precambrian rocks of Novaya Zemlya. Geol. Soc. Lond. Mem. 2004, 30, 135–143, doi:10.1144/GSL.MEM.2004.030.01.12.
[12]  O’leary, N.; White, N.; Tull, S.; Bashilov, V.; Kuprin, V.; Natapov, L.; Macdonald, D. Evolution of the Timan–Pechora and south barents sea basins. Geol. Mag. 2004, 141, 141–160, doi:10.1017/S0016756804008908.
[13]  Puchkov, V. Tectonics of the Urals: Modern concepts. Geotectonics 1997, 31, 294–312.
[14]  Gee, D.G.; Bogolepova, O.K.; Lorenz, H. The Timanide, Caledonide and Uralide orogens in the Eurasian high Arctic, and relationships to the palaeo-continents Laurentia, Baltica and Siberia. Geol. Soc. Lond. Mem. 2006, 32, 507–520, doi:10.1144/GSL.MEM.2006.032.01.31.
[15]  Scott, R.A.; Howard, J.P.; Guo, L.; Schekoldin, R.; Pease, V. Offset and curvature of the Novaya Zemlya fold-and-thrust belt, Arctic Russia. Pet. Geol. Conf. Ser. 2010, 7, 645–657.
[16]  Drachev, S.S.; Malyshev, N.A.; Nikishin, A.M. Tectonic history and petroleum geology of the Russian Arctic Shelves: An overview. Pet. Geol. Conf. Ser. 2010, 7, 591–619.
[17]  Seng?r, A.; Natal’in, B.; Burtman, V. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 1993, 364, 299–307, doi:10.1038/364299a0.
[18]  International Bathymetric Chart of the Arctic Ocean (IBCAO) database Home Page. Available online: http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/-arctic.html (accessed on 25 July 2013).
[19]  Bezzubtsev, V.; Malitch, N.; Markov, F.; Pogrebitsky Yu, E. Geological Map of Mountainous Taimyr 1: 500,000, Ministry of Geology of the USSR. [in Russian]; Ministry of Geology of the Russian Federation (RSFSR), Krasnoyarskgeologia: Krasnoyarsk, Russian, 1983.
[20]  Inger, S.; Scott, R.; Golionko, B. Tectonic evolution of the Taimyr Peninsula, northern Russia: Implications for Arctic continental assembly. J. Geol. Soc. 1999, 156, 1069–1072, doi:10.1144/gsjgs.156.6.1069.
[21]  Walderhaug, H.; Eide, E.; Scott, R.; Inger, S.; Golionko, E. Palaeomagnetism and 40Ar/39Ar geochronology from the South Taimyr igneous complex, Arctic Russia: A Middle–Late Triassic magmatic pulse after Siberian flood-basalt volcanism. Geophys. J. Int. 2005, 163, 501–517, doi:10.1111/j.1365-246X.2005.02741.x.
[22]  Lorenz, H.; Gee, D.G.; Whitehouse, M.J. New geochronological data on Palaeozoic igneous activity and deformation in the Severnaya Zemlya Archipelago, Russia, and implications for the development of the Eurasian Arctic margin. Geol. Mag. 2007, 144, 105–125, doi:10.1017/S001675680600272X.
[23]  Lorenz, H.; M?nnik, P.; Gee, D.; Proskurnin, V. Geology of the Severnaya Zemlya Archipelago and the North Kara Terrane in the Russian high Arctic. Int. J. Earth Sci. 2008, 97, 519–547, doi:10.1007/s00531-007-0182-2.
[24]  Pease, V.; Scott, R.A. Crustal affinities in the Arctic Uralides, northern Russia: Significance of detrital zircon ages from Neoproterozoic and Palaeozoic sediments in Novaya Zemlya and Taimyr. J. Geol. Soc. 2009, 166, 517–527, doi:10.1144/0016-76492008-093.
[25]  Gee, D.G.; Pease, V. The Neoproterozoic Timanide Orogen of Eastern Baltica; Geological Society Publishing House: London, UK, 2004.
[26]  Lorenz, H.; Gee, D.G.; Larionov, A.N.; Majka, J. The Grenville–Sveconorwegian orogen in the high Arctic. Geol. Mag. 2012, 149, 875–891, doi:10.1017/S0016756811001130.
[27]  Dobretsov, N.; Vernikovsky, V. Mantle plumes and their geologic manifestations. Int. Geol. Rev. 2001, 43, 771–787, doi:10.1080/00206810109465047.
[28]  Reichow, M.K.; Pringle, M.; Al’Mukhamedov, A.; Allen, M.; Andreichev, V.; Buslov, M.; Davies, C.; Fedoseev, G.; Fitton, J.; Inger, S. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet. Sci. Lett. 2009, 277, 9–20, doi:10.1016/j.epsl.2008.09.030.
[29]  Nikishin, A.; Ziegler, P.; Abbott, D.; Brunet, M.-F.; Cloetingh, S. Permo–Triassic intraplate magmatism and rifting in Eurasia: Implications for mantle plumes and mantle dynamics. Tectonophysics 2002, 351, 3–39, doi:10.1016/S0040-1951(02)00123-3.
[30]  Saunders, A.D.; England, R.W.; Reichow, M.K.; White, R.V. A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian Basin, Russia. Lithos 2005, 79, 407–424, doi:10.1016/j.lithos.2004.09.010.
[31]  Torsvik, T.H.; Andersen, T.B. The Taimyr fold belt, Arctic Siberia: Timing of prefold remagnetisation and regional tectonics. Tectonophysics 2002, 352, 335–348, doi:10.1016/S0040-1951(02)00274-3.
[32]  Miller, E.L.; Soloviev, A.; Kuzmichev, A.; Gehrels, G.; Toro, J.; Tuchkova, M. Jurassic and Cretaceous foreland basin deposits of the Russian Arctic: Separated by birth of the Makarov Basin? Norw. J. Geol. 2008, 88, 201–226.
[33]  Vernikovsky, V. The geodynamic evolution of the Taimyr folded area. Geol. Pac. Ocean 1996, 12, 691–704.
[34]  Bezzubtsev, V.; Zalyaleyev, R.; Sakovich, A. Geological Map of Mountainous Taimyr 1: 500,000: Explanatory Notes. [in Russian]; Ministry of Geology of the Russian Federation (RSFSR), Krasnoyarskgeologia: Krasnoyarsk, Russian, 1986.
[35]  Zonenshain, L.; Kuzmin, M.; Natapov, L. Geology of the USSR: A Plate-Tectonic Synthesis (American Geophysical Union, Geodynamics Series), 21; American Geophysical Union: Washington, DC, USA, 1990.
[36]  Uflyand, A.; Natapov, L.; Lopatin, V.; Chernov, D. On the Taimyr tectonic nature. Geotectonics 1991, 6, 76–79.
[37]  Vernikovsky, V.; Vernikovskaya, A.; Pease, V.; Gee, D. Neoproterozoic orogeny along the margins of Siberia. Geol. Soc. Lond. Mem. 2004, 30, 233–248, doi:10.1144/GSL.MEM.2004.030.01.18.
[38]  Pease, V.; Gee, D.G.; Vernikovsky, V.; Vernikovskaya, A.; Kireev, S. Geochronological evidence for late-Grenvillian magmatic and metamorphic events in central Taimyr, northern Siberia. Terra Nova 2001, 13, 270–280, doi:10.1046/j.1365-3121.2001.00351.x.
[39]  Vernikovsky, V.; Neimark, L.; Ponomarchuk, V.; Vernikovskaya, A.; Kireev, A.; Kuz’Min, D. Geochemistry and age of collision granitoides and metamorphites of the Kara microcontinent (Northern Taimyr). Russ. Geol. Geophys. 1995, 36, 46–60.
[40]  Vernikovsky, V.; Sal’nikova, E.; Kotov, A.; Ponomarchuk, V.; Kovach, V.; Travin, A.; Yakovleva, C.; Berezjnava, N. Age of post-collisional granitoids of Northern Taimyr: U-Pb, Sm-Nd, Rb-Sr, and Ar-Ar dat. Dokl. RAN 1998, 363, 375–378.
[41]  Pease, V.; Department of Geological Sciences, Stockholm University, Stockholm, Sweden.. unpublished work .
[42]  Natapov, L.M.; Paraketsov, K.V.; Kulikova, L.I.; Kononov, M.N. Jurassic-Cretaceous Tectonostratigraphy of Northern Russia. CASP Rep. Arct. Russ. Stud. Reg. Arct. Proj. 1997, 663, 146–150.
[43]  Dickinson, W.R.; Beard, L.; Brakenridge, G.R.; Erjavec, J.L.; Ferguson, R.C.; Inman, K.F.; Knepp, R.E.X.A.; Lindberg, F.; Ryberg, P.T. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Bull. Geol. Soc. Am. 1983, 94, 222–235, doi:10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2.
[44]  Mange, M.A.; Maurer, H.F. Heavy Minerals in Colour; Chapman & Hall: London, UK, 1992; Volume 147, p. 145.
[45]  Morton, A.C.; Berge, C. Heavy mineral suites in the Statfjord and Nansen Formations of the Brent Field, North Sea; A new tool for reservoir subdivision and correlation. Pet. Geosci. 1995, 1, 355–364, doi:10.1144/petgeo.1.4.355.
[46]  Galehouse, J.S. Point Counting. In Procedures in Sedimentary Petrology; Wiley-Interscience: New York, NY, USA, 1971; pp. 385–407.
[47]  Sláma, J.; Kosler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35, doi:10.1016/j.chemgeo.2007.11.005.
[48]  Paces, J.B.; Miller, J.D. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. J. Geophys. Res. Solid Earth 1993, 98, 13997–14013, doi:10.1029/93JB01159.
[49]  Hellstrom, J.; Paton, C.; Woodhead, J.; Hergt, J. Iolite: Software for spatially resolved LA-(quad and MC) ICPMS analysis. Mineral. Assoc. Can. Short Course Ser. 2008, 40, 343–348.
[50]  Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. Atom. Spectrom. 2011, 26, 2508–2518, doi:10.1039/c1ja10172b.
[51]  Petrus, J.A.; Kamber, B.S. VizualAge: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand. Geoanal. Res. 2012, 3, 247–270, doi:10.1111/j.1751-908X.2012.00158.x.
[52]  Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newslett. 1997, 21, 115–144, doi:10.1111/j.1751-908X.1997.tb00538.x.
[53]  Lugwig, K. Isoplot/Ex Version 4.1, a Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2010; p. No. 4.
[54]  Smyth, H.R.; Hall, R.; Nichols, G.J. Significant volcanic contribution to some quartz-rich sandstones, east Java, indonesia. J. Sediment. Res. 2008, 78, 335–356, doi:10.2110/jsr.2008.039.
[55]  Folk, R.L. Petrology of Sedimentary Rocks, 2nd ed. ed.; Hemphill Press: Austin, TX, USA, 1974.
[56]  Dickinson, W.R.; Suczek, C.A. Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull. 1979, 63, 2164–2182.
[57]  Deer, W.A.; Howie, R.A. An Introduction to the Rock-Forming Minerals; Longman: New York, NY, USA, 1966.
[58]  Morton, A.C.; Hallsworth, C.R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–29, doi:10.1016/S0037-0738(98)00118-3.
[59]  Morton, A.C.; Hallsworth, C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256, doi:10.1016/0037-0738(94)90041-8.
[60]  Gehrels, G. Detrital zircon U-Pb geochronology: Current methods and new opportunities. In Tectonics of Sedimentary Basins: Recent Advances; Busby, C., Pérez Azor, A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 45–62.
[61]  Gehrels, G. Analysis Tools. Available online: http://www.geo.arizona.edu/alc/Analysis%20Tools.htm (accessed on 25 July 2013).
[62]  Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500, doi:10.2113/0530469.
[63]  Prokopiev, A.V.; Toro, J.; Miller, E.L.; Gehrels, G.E. The paleo–Lena River—200 m.y. of transcontinental zircon transport in Siberia. Geology 2008, 36, 699–702, doi:10.1130/G24924A.1.
[64]  Bea, F.; Fershtater, G.; Montero, P. Granitoids of the Uralides: Implications for the evolution of the orogen. Geophys. Monogr. Ser. 2002, 132, 211–232, doi:10.1029/132GM11.
[65]  Scarrow, J.; Hetzel, R.; Gorozhanin, V.; Dinn, M.; Glodny, J.; Gerdes, A.; Ayala, C.; Montero, P. Four decades of geochronological work in the southern and middle Urals: A review. Geophys. Monogr. Ser. 2002, 132, 233–255, doi:10.1029/132GM12.
[66]  Brown, D.; Puchkov, V.; Alvarez-Marron, J.; Bea, F.; Perez-Estaun, A. Tectonic processes in the Southern and Middle Urals: An overview. Geol. Soc. Lond. Mem. 2006, 32, 407–419, doi:10.1144/GSL.MEM.2006.032.01.24.
[67]  G?rz, I.; Buschmann, B.; Kroner, U.; Hauer, R.; Henning, D. The Permian emplacement of granite–gneiss complexes in the East Uralian Zone and implications on the geodynamics of the Uralides. Tectonophysics 2009, 467, 119–130, doi:10.1016/j.tecto.2008.12.019.
[68]  Marello, L.; Ebbing, J.; Gernigon, L. Basement inhomogeneities and crustal setting in the Barents Sea from a combined 3D gravity and magnetic model. Geophys. J. Int. 2013, 193, 557–584, doi:10.1093/gji/ggt018.
[69]  Lorenz, H.; Gee, D.G.; Simonetti, A. Detrital zircon ages and provenance of the Late Neoproterozoic and Palaeozoic successions on Severnaya Zemlya, Kara Shelf: A tie to Baltica. Norw. J. Geol. 2008, 88, 235–258.
[70]  Miller, E.; Gehrels, G.; Pease, V.; Sokolov, S. Stratigraphy and U-Pb detrital zircon geochronology of Wrangel Island, Russia: Implications for Arctic paleogeography. AAPG Bull. 2010, 94, 665–692, doi:10.1306/10200909036.
[71]  Willner, A.P.; Sindern, S.; Metzger, R.; Ermolaeva, T.; Kramm, U.; Puchkov, V.; Kronz, A. Typology and single grain U/Pb ages of detrital zircons from Proterozoic sandstones in the SW Urals (Russia): Early time marks at the eastern margin of Baltica. Precambrian Res. 2003, 124, 1–20, doi:10.1016/S0301-9268(03)00045-7.
[72]  Pease, V.; Persson, S. Neoproterozoic Island Arc Magmatism of Northern Taimyr. In Proceedings of the Fourth International Conference on Arctic MarginsUS Department of the InteriorMinerals Management Service OCS Study, Anchorage, AK, USA, October 2006; pp. 31–49.
[73]  Glodny, J.; Pease, V.; Montero, P.; Austrheim, H.; Rusin, A. Protolith ages of eclogites, Marun-Keu Complex, Polar Urals, Russia: Implications for the pre-and early Uralian evolution of the northeastern European continental margin. Geol. Soc. Lond. Mem. 2004, 30, 87–105, doi:10.1144/GSL.MEM.2004.030.01.09.
[74]  Metelkin, D.V.; Vernikovsky, V.A.; Kazansky, A.Y.; Bogolepova, O.K.; Gubanov, A.P. Paleozoic history of the Kara microcontinent and its relation to Siberia and Baltica: Paleomagnetism, paleogeography and tectonics. Tectonophysics 2005, 398, 225–243, doi:10.1016/j.tecto.2005.02.008.
[75]  Kuzmichev, A.B.; Pease, V.L. Siberian trap magmatism on the New Siberian Islands: Constraints for Arctic Mesozoic plate tectonic reconstructions. J. Geol. Soc. 2007, 164, 959–968, doi:10.1144/0016-76492006-090.
[76]  Vernikovsky, V.A.; Pease, V.L.; Vernikovskaya, A.E.; Romanov, A.P.; Gee, D.G.; Travin, A.V. First report of early Triassic A-type granite and syenite intrusions from Taimyr: Product of the northern Eurasian superplume? Lithos 2003, 66, 23–36, doi:10.1016/S0024-4937(02)00192-5.
[77]  Massey, F.J., Jr. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Statist. Assoc. 1951, 46, 68–78, doi:10.1080/01621459.1951.10500769.
[78]  Glebovsky, V.; Kaminsky, V.; Minakov, A.; Merkur’ev, S.; Childers, V.; Brozena, J. Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field. Geotectonics 2006, 40, 263–281, doi:10.1134/S0016852106040029.
[79]  Malyshev, N.; Nikishin, V.; Nikishin, A.; Obmetko, V.; Martirosyan, V.; Kleshchina, L.; Reydik, Y.V. A New Model of the Geological Structure and Evolution of the North Kara Sedimentary Basin. Doklady Earth Sci. 2012, 445, 791–795, doi:10.1134/S1028334X12070057.
[80]  Cawood, P.A.; Hawkesworth, C.J.; Dhuime, B. Detrital zircon record and tectonic setting. Geology 2012, 40, 875–878, doi:10.1130/G32945.1.
[81]  Grantz, A.; Hart, P.E.; Childers, V.A. Chapter 50 Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean. Geol. Soc. Lond. Mem. 2011, 35, 771–799, doi:10.1144/M35.50.
[82]  Miller, E.L.; Toro, J.; Gehrels, G.; Amato, J.M.; Prokopiev, A.; Tuchkova, M.I.; Akinin, V.V.; Dumitru, T.A.; Moore, T.E.; Cecile, M.P. New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology. Tectonics 2006, 25, doi:10.1029/2005TC001830.
[83]  Amato, J.M.; Toro, J.; Miller, E.L.; Gehrels, G.E.; Farmer, G.L.; Gottlieb, E.S.; Till, A.B. Late Proterozoic–Paleozoic evolution of the Arctic Alaska–Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions. Geol. Soc. Am. Bull. 2009, 121, 1219–1235, doi:10.1130/B26510.1.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413