Detrital Zircon Fission-Track Thermochronology of the Present-Day Isère River Drainage System in the Western Alps: No Evidence for Increasing Erosion Rates at 5 Ma
The Isère River system drains parts of the Western Alps in south-eastern France. Zircon fission-track data of the Isère River and its tributaries show a range of apparent cooling ages from about 7 to 150 Ma. Zircons with Jurassic to early Tertiary cooling ages are derived from partially reset or non-reset sedimentary cover units of the internal and external Alps, while grains belonging to the minimum age fraction are derived from areas of active river incision in the external crystalline massifs or from the Penninic front. With the absence of major normal faults, upper crustal exhumation in the Western Alps is driven by erosion. First-order long-term exhumation rate estimates based on minimum ages are about 0.5–0.6 km/Myr for the fastest exhuming areas, while drainage basin average rates based on central ages are about 0.2–0.4 km/Myr. These rates are slower than published short-term erosion rates determined from detrital quartz 10Be analyses in the Pelvoux massif. While present-day erosion is faster than the long-term average exhumation rates, the Isère River drainage zircon fission-track data do not show evidence for increasing erosion rates at 5 Ma. Exhumation has not been sufficient in this area to expose rocks with <5 Ma cooling ages today. The increase in erosion may have happened only in glaciated areas between 1 and 2 Ma.
References
[1]
Carrapa, B. Tracing exhumation and orogenic wedge dynamics in the European Alps with detrital thermochronology. Geology 2009, 37, 1127–1130, doi:10.1130/G30065A.1.
[2]
Carrapa, B. Tracing exhumation and orogenic wedge dynamics in the European Alps with detrital thermochronology—Reply. Geology 2010, 38, e227, doi:10.1130/G31644Y.1.
[3]
Bernet, M. Tracing exhumation and orogenic wedge dynamics in the European Alps with detrital thermochronology—Comment. Geology 2010, 38, e226, doi:10.1130/G31173C.1.
[4]
Carrapa, B.; Wijbrans, J.; Bertotti, G. Episodic exhumation in the Western Alps. Geology 2003, 31, 601–604, doi:10.1130/0091-7613(2003)031<0601:EEITWA>2.0.CO;2.
[5]
Morag, N.; Avigad, D.; Harlavan, Y.; McWilliams, M.O.; Michard, A. Rapid exhumation and mountain building in the Western Alps: Petrology and 40Ar/39Ar geochronology of detritus from Tertiary basins of southeastern France. Tectonics 2008, 27, doi:10.1029/2007TC002142.
[6]
Bernet, M.; Tricart, P. The Oligocene orogenic pulse in the Southern Penninic Arc (Western Alps): Structural, sedimentary and thermochronological constraints. Bull. Soc. Géol. Fr. 2011, 182, 25–36.
[7]
Jourdan, S.; Bernet, M.; Tricart, P.; Hardwick, E.; Paquette, J.L.; Guillot, S.; Dumont, T.; Schwartz, S. Short-lived fast erosional exhumation of the internal Western Alps, during the late Early Oligocene: Constraints from geo-thermochronology of pro- and retro-side foreland basin sediments. Lithosphere 2013, 5, 211–225, doi:10.1130/L243.1.
[8]
Bernet, M.; Brandon, M.T.; Garver, J.I.; Balestrieri, M.L.; Ventura, B.; Zattin, M. Exhuming the Alps through time: Clues from detrital zircon fission-track ages. Basin Res. 2009, 21, 781–798, doi:10.1111/j.1365-2117.2009.00400.x.
[9]
Kuhlemann, J. Post-collisional sediment budget of circum-Alpine basins (Central Europe). Mem. Ist. di Geol. Min. Uni. Padova 2000, 52, 1–91.
[10]
Kuhlemann, J.; Frisch, W.; Székely, B.; Dunkl, I.; Kázmér, M. Post-collisional sediment budget history of the Alps: Tectonic versus climatic control. Int. J. Earth Sci. 2002, 91, 818–837, doi:10.1007/s00531-002-0266-y.
[11]
Cederbom, C.E.; Sinclair, H.D.; Schlunegger, F.; Rahn, M.K. Climate-induced rebound and exhumation of the European Alps. Geology 2004, 32, 709–712, doi:10.1130/G20491.1.
[12]
Vernon, A.J.; van der Beek, P.A.; Sinclair, H.D.; Rahn, M.K. Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database. Earth Plan. Sci. Lett. 2008, 270, 316–329, doi:10.1016/j.epsl.2008.03.053.
[13]
Willett, S.D. Late Neogene erosion of the Alps: A climate driver? Annu. Rev. Earth Plan. Sci. 2010, 38, 409–435, doi:10.1146/annurev-earth-040809-152543.
[14]
Marine Geoscience Data System, Lamont-Doherty Earth Observatory. GeoMapApp. Version 3.3.6; Columbia University: Palisades, NY, USA, 2013. Available online: http://www.geomapapp.org/ (accessed on 1 February 2013).
[15]
Platt, J.P.; Behrmann, J.H.; Cunningham, P.C.; Dewey, J.F.; Helman, M.; Parish, M.; Shepley, M.G.; Wallis, S.; Weston, P.G. Kinematics of the Alpine arc and the motion history of Adria. Nature 1989, 337, 158–161, doi:10.1038/337158a0.
[16]
Sinclair, H.D. Flysch to molasse transition in peripheral foreland basins: The role of the passive margin versus slab breakoff. Geology 1997, 25, 1123–1126, doi:10.1130/0091-7613(1997)025<1123:FTMTIP>2.3.CO;2.
[17]
Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Ecl. Geol. Helv. 2004, 97, 93–117, doi:10.1007/s00015-004-1113-x.
[18]
Schmid, S.M.; Kissling, E. The arc of the western Alps in the light of geophysical data on deep crustal structure. Tectonics 2000, 19, 62–85, doi:10.1029/1999TC900057.
[19]
Graciansky, P.C.; Roberts, D.G.; Tricart, P. The Western Alps, from Rift to Passive Margin to Orogenic Belt: An Integrated Geoscience Overview. Developments in Earth Surface Processe Volume 14; Elsevier: Amsterdam, The Netherlands, 2010.
[20]
Fügenschuh, B.; Schmid, S. Late stages of deformation and exhumation of an orogen constrained by fission-track data: A case study in the Western Alps. GSA Bull. 2003, 115, 1425–1440, doi:10.1130/B25092.1.
[21]
Van der Beek, P.; Valla, P.G.; Herman, F.; Braun, J.; Persano, C.; Dobson, K.J.; Labrin, E. Inversion of thermochronological age–elevation profiles to extract independent estimates of denudation and relief history—II: Application to the French Western Alps. Earth Plan. Sci Lett. 2010, 296, 9–22, doi:10.1016/j.epsl.2010.04.032.
[22]
Seward, D.; Ford, M.; Bürgisser, J.; Lickorish, H.; Williams, E.A.; Meckel, L.D., III. Preliminary Results of Fission-Track Analyses in the Southern Pelvoux Area, SE France. In Memoria del Instituto dell Geoligia i Mineraligia di Universidad de Padova, Proceedings of 3rd Workshop on Alpine Geological Studies, Biella–Oropa, Italy, 29 September–1 October 1997; Gosso, G., Jadoul, F., Sella, M., Spalla, M.I., Eds.; Volume 51, pp. 25–31.
[23]
Sabil, N. La Datation Par Traces De Fission: Aspects Méthodologiques et Applications Thermochronologiques en Contextes alpiNs et de Marge Continentale[in French]. Ph.D. Thesis, Université Joseph Fourier, Grenoble, France, 7 June 1995.
[24]
Glotzbach, C.; Bernet, M.; van der Beek, P. Detrital thermochronology records changing source areas and steady exhumation in the Western and Central European Alps. Geology 2011, 39, 239–242, doi:10.1130/G31757.1.
[25]
Bernet, M.; Brandon, M.T.; Garver, J.I.; Molitor, B.R. Downstream changes in Alpine detrital zircon fission-track ages of the Rh?ne and Rhine Rivers. J. Sediment. Res. 2004, 74, 82–94, doi:10.1306/041003740082.
[26]
Naeser, N.D.; Zeitler, P.K.; Naeser, C.W.; Cerveny, P.F. Provenance studies by fission track dating–etching and counting procedures. Nucl. Tracks Rad. Meas. 1987, 13, 121–126, doi:10.1016/1359-0189(87)90022-7.
[27]
Bernet, M.; Brandon, M.T.; Garver, J.I.; Molitor, B.R. Fundamentals of Detrital Zircon Fission-Track Analysis for Provenance and Exhumation Studies with Examples from the European Alps. In Detrital Thermochronology—Exhumation and Landscape Evolution of Mountain Belts. Special Publication Volume 378; Bernet, M., Spiegel, C., Eds.; Geological Society of America: Boulder, CO, USA, 2004; pp. 25–36.
[28]
Bernet, M.; Garver, J.I. Fission-Track Dating of Detrital Zircon. In Low-Temperature Thermochronology: Reviews in Mineralogy and Geochemistry; Reiners, P., Ehlers, T., Eds.; Minerlogical Society of America: Chantilly, VA, USA, 2005; Volume 58, pp. 205–238.
[29]
Vermeesch, P. RadialPlotter: A Java application for fission track, luminescence and other radial plots. Radiat. Measur. 2009, 44, 409–410.
[30]
Verrmeesch, P. On the visualization of detrital age distributions. Chem. Geol. 2012, 312–313, 190–194, doi:10.1016/j.chemgeo.2012.04.021.
Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in FORTRAN, 2nd ed. ed.; Cambridge University Press: New York, NY, USA, 1992.
[33]
Willett, S.D.; Brandon, M. Some analytical methods for converting thermochronometric age to erosion rate. Geochem. Geoph. Geosys. 2013, 14, doi:10.1029/2012GC004279.
[34]
Ehlers, T.A.; Chaudhri, T.; Kumar, S.; Fuller, C.S.; Willett, S.D.; Ketcham, R.A.; Brandon, M.T.; Belton, D.X.; Kohn, B.P.; Gleadow, A.J.W.; et al. Computational Tools for Low-Temperature Thermochronometer Interpretation. In Low-Temperature Thermochronology: Reviews in Mineralogy and Geochemistry; Reiners, P.W., Ehlers, T.A., Eds.; Minerlogical Society of America: Chantilly, VA, USA, 2005; Volume 58, pp. 205–238.
[35]
Reiners, P.W.; Brandon, M.T. Using Thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci. 2006, 34, 419–466, doi:10.1146/annurev.earth.34.031405.125202.
[36]
England, P.; Molnar, P. Surface uplift, uplift of rocks, and exhumation of rocks. Geology 1990, 18, 1173–1177, doi:10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2.
[37]
Delunel, R.; van der Beek, P.; Carcaillet, J.; Bourles, D.; Valla, P.G. Frost-cracking control on catchment denudation rates: Insights from in situ produced 10Be concentrations in stream sediments (Ecrins–Pelvoux massif, French Western Alps). Earth Plan. Sci. Lett. 2010, 293, 72–83, doi:10.1016/j.epsl.2010.02.020.
[38]
Bernet, M.; Zattin, M.; Garver, J.I.; Brandon, M.T.; Vance, J.A. Steady-state exhumation of the European Alps. Geology 2001, 29, 35–38, doi:10.1130/0091-7613(2001)029<0035:SSEOTE>2.0.CO;2.
[39]
Schlunegger, F. Controls of surface erosion on the evolution of the Alps: Constraints from the stratigraphies of the adjacent foreland basins. Int. J. Earth Sci. 1999, 88, 285–304, doi:10.1007/s005310050265.
[40]
Zhang, P.; Molnar, P.; Downs, W.R. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 2001, 410, 891–897, doi:10.1038/35073504.
[41]
Willenbring, J.K.; von Blanckenburg, F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 2010, 465, 211–214, doi:10.1038/nature09044.
[42]
Braun, J. Pecube: A new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Comp. Geosci. 2003, 29, 787–794, doi:10.1016/S0098-3004(03)00052-9.
[43]
Valla, P.G.; van der Beek, P.; Shuster, D.; Braun, J.; Herman, F.; Tassant-Got, L.A.; Gautheron, C. Late-Neogene exhumation and relief development of the Aar and Aiguilles Rouges massifs (Swiss Alps) from low-temperature thermochronology modeling and 4He/3He thermochronometry. J. Geoph. Res. Earth Surf. 2011, 295, 511–522.