全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geosciences  2013 

Evaluating Complex Magma Mixing via Polytopic Vector Analysis (PVA) in the Papagayo Tuff, Northern Costa Rica: Processes that Form Continental Crust

DOI: 10.3390/geosciences3030585

Keywords: Papagayo Tuff, Bagaces Formation, Central American Volcanic Arc, magma mixing, magma mingling, microchemistry, polytopic vector analysis, continental crust

Full-Text   Cite this paper   Add to My Lib

Abstract:

Over the last forty years, research has revealed the importance of magma mixing as a trigger for volcanic eruptions, as well as its role in creating the diversity of magma compositions in arcs. Sensitive isotopic and microchemical techniques can reveal subtle evidence of magma mixing in igneous rocks, but more robust statistical techniques for bulk chemical data can help evaluate complex mixing relationships. Polytopic vector analysis (PVA) is a multivariate technique that can be used to evaluate suites of samples that are produced by mixing of two or more magma batches. The Papagayo Tuff of the Miocene-Pleistocene Bagaces Formation in northern Costa Rica is associated with a segment of the Central American Volcanic Arc. While this segment of the arc is located on oceanic plateau, recent (<8 Ma) ignimbrites bear the chemical signatures of upper continental crust, marking the transition from oceanic to continental crust. The Papagayo Tuff contains banded pumice fragments consistent with one or more episodes of mixing/mingling to produce a single volcanic deposit. The PVA solution for the sample set is consistent with observations from bulk chemistry, microchemistry and petrographic data from the rocks. However, without PVA, the unequivocal identification of the three end-member solution would not have been possible.

References

[1]  Davidson, J.P.; Hora, J.M.; Garrison, J.M.; Dungan, M.A. Crustal forensics in arc magmas. J. Volcanol. Geotherm. Res. 2005, 140, 157–170, doi:10.1016/j.jvolgeores.2004.07.019.
[2]  Eichelberger, J.C. Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 1980, 288, 446–450, doi:10.1038/288446a0.
[3]  Eichelberger, J.C.; Chertkoff, D.G.; Dreher, S.T.; Nye, C.J. Magmas in collision: Rethinking chemical zonation in silicic magmas. Geology 2000, 28, 603–606, doi:10.1130/0091-7613(2000)28<603:MICRCZ>2.0.CO;2.
[4]  Murphy, M.D.; Sparks, R.S.J.; Barclay, J.; Carroll, M.R.; Lejeune, A.-M.; Brewer, T.S.; Macdonald, R.; Black, S.; Young, S. The role of magma mixing in triggering the current eruption at the Soufriere Hills volcano, Montserrat, West Indies. Geophys. Res. Lett. 1998, 25, 3433–3436, doi:10.1029/98GL00713.
[5]  Ruprecht, P.; Bachmann, O. Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. Geology 2010, 38, 919–922, doi:10.1130/G31110.1.
[6]  Sparks, S.R.J.; Sigurdsson, H. Magma mixing: A mechanism for triggering acid explosive eruptions. Nature 1977, 267, 315–318, doi:10.1038/267315a0.
[7]  Wiebe, R.A. Rupture and inflation of a basic magma chamber by silicic liquid. Nature 1987, 326, 69–71, doi:10.1038/326069a0.
[8]  D’Lemos, R.S. Mixing between granitic and dioritic crystal mushes, Guernsey, Channel Islands, UK. Lithos 1996, 38, 233–257, doi:10.1016/0024-4937(96)00007-2.
[9]  De Silva, S.; Salas, G.; Schubring, S. Triggering explosive eruptions: The case for silicic magma recharge at Huaynaputina, southern Peru. Geology 2008, 36, 387–390, doi:10.1130/G24380A.1.
[10]  Dungan, M.A. Open system magmatic evolution of the Taos Plateau volcanic field, northern New Mexico: II. The genesis of cryptic hybrids. J. Petrol. 1987, 28, 955–977, doi:10.1093/petrology/28.5.955.
[11]  Humphreys, M.C.S.; Blundy, J.D.; Sparks, R.S.J. Magma evolution and open-system processes at Shiveluch Volcano: Insights from phenocryst zoning. J. Petrol. 2006, 47, 2303–2334, doi:10.1093/petrology/egl045.
[12]  Ruprecht, P.; W?rner, G. Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. J. Volcanol. Geotherm. Res. 2007, 165, 142–162, doi:10.1016/j.jvolgeores.2007.06.002.
[13]  Browne, B.L.; Eichelberger, J.C.; Patino, L.C.; Vogel, T.A.; Uto, K.; Hoshizumi, H. Magma mingling as indicated by texture and Sr/Ba ratios of plagioclase phenocrysts from Unzen volcano, SW Japan. J. Volcanol. Geotherm. Res. 2006, 154, 103–116, doi:10.1016/j.jvolgeores.2005.09.022.
[14]  Davidson, J.P.; Tepley, F.J., III. Recharge in volcanic systems: Evidence from isotope profiles of phenocrysts. Science 1997, 275, 826–829, doi:10.1126/science.275.5301.826.
[15]  Feeley, T.C.; Dungan, M.A. Compositional and dynamic controls on mafic-silicic magma interactions at continental arc volcanoes: Evidence from cordón el guadal, tatara-san pedro complex, Chile. J. Petrol. 1996, 37, 1547–1577, doi:10.1093/petrology/37.6.1547.
[16]  Izbekov, P.E.; Eichelberger, J.C.; Patino, L.C.; Vogel, T.A.; Ivanov, B.V. Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: Evidence for rapid introduction by basaltic replenishment. Geology 2002, 30, 799–802, doi:10.1130/0091-7613(2002)030<0799:CCOPPI>2.0.CO;2.
[17]  Barclay, J.; Herd, R.A.; Edwards, B.R.; Christopher, T.; Kiddle, E.J.; Plail, M.; Donovan, A. Caught in the act: Implications for the increasing abundance of mafic enclaves during the recent eruptive episodes of the Soufrière Hills Volcano, Montserrat. Geophys. Res. Lett. 2010, 37, L00E09:1–L00E09:5, doi:10.1029/2010GL042509.
[18]  Tefend, K.S.; Vogel, T.A.; Flood, T.P.; Ehrlich, R. Identifying relationships among silicic magma batches by polytopic vector analysis: A study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic field. J. Volcanol. Geotherm. Res. 2007, 167, 198–211, doi:10.1016/j.jvolgeores.2006.07.011.
[19]  Vogel, T.A.; Hidalgo, P.J.; Patino, L.; Tefend, K.S.; Ehrlich, R. Evaluation of magma mixing and fractional crystallization using whole-rock chemical analyses: Polytopic vector analyses. Geochem. Geophys. Geosyst. 2008, 9, doi:10.1029/2007GC001790.
[20]  Rogers, R.D.; Mann, P.; Emmet, P.A. Tectonic Terranes of the Chortis Block Based on an Integration of Regional Aeromagnetic and Geologic Data. In Geologic and Tectonic Development of the Caribbean Plate Boundary in Northern Central America. GSA Special Papers 428; Mann, P., Ed.; Geological Society of America: Boulder, CA, USA, 2007; pp. 65–88.
[21]  MacKenzie, L.; Abers, G.A.; Fischer, K.M.; Syracuse, E.M.; Protti, J.M.; Gonzalez, V.; Strauch, W. Crustal structure along the southern Central American volcanic front. Geochem. Geophys. Geosyst. 2008, 9, doi:10.1029/2008GC001991.
[22]  Linkimer, L.; Beck, S.L.; Schwartz, S.Y.; Zandt, G.; Levin, V. Nature of crustal terranes and the Moho in northern Costa Rica from receiver function analysis. Geochem. Geophys. Geosyst. 2010, 11, doi:10.1029/2009GC002795.
[23]  Sinton, C.W.; Duncan, R.A.; Storey, M.; Lewis, J.; Estrada, J.J. An oceanic flood basalt province within the Caribbean plate. Earth Planet. Sci. Lett. 1998, 155, 221–235, doi:10.1016/S0012-821X(97)00214-8.
[24]  Marshall, J.S. The Geomorphology and Physiographic Provinces of Central America. In Central America: Geology, Resources and Hazards; Bundschuh, J., Alvarado, G.E., Eds.; Taylor and Francis: London, UK, 2007; pp. 1–51.
[25]  Dengo, G. Tectonic-Igneous Sequence in Costa Rica. In Petrologic Studies: A Volume to Honor A.F. Buddington; Engel, A.E.J., James, H.L., Leonard, B.F., Eds.; Geological Society of America: Boulder, CA, USA, 1962; pp. 133–161.
[26]  Kussmaul, S.; Tournon, J.; Alvarado, G.E. Evolution of the Neogene to Quaternary igneous rocks of Costa Rica. Profil 1994, 7, 97–123.
[27]  Tournon, J. Magmatismes du Mesozoique a l’actuel en Amérique Central: L’example de Costa Rica, des ophiolites aux andesites. [in French]; Université Curie: Paris, France, 1984.
[28]  Chiesa, S.; Civelli, G.; Gillot, P.-Y.; Mora, O.; Alvarado, G.E. Rocas piroclásticas asociadas con la Formación de la caldera Guayabo, cordillera de Guanacaste, Costa Rica[in Spanish]. Rev. Geol. Am. Central 1992, 14, 59–75.
[29]  Aguilar, T.; Alvarado, G.E. Tafonomía y sedimentología de la paleobiota estuarina en los Cerros Barbudal (Costa Rica) sepultada por vulcanismo neógeno[in Spanish]. Rev. Geol. Am. Cent. 2004, 30, 111–116.
[30]  Gillot, P.-Y.; Chiesa, S.; Alvarado, G.E. Chronostratigraphy of upper Miocene-Quaternary volcanism in northern Costa Rica. Rev. Geol. Am. Cent. 1994, 17, 45–53.
[31]  Alvarado, G.E.; Kussmaul, S.; Chiesa, S.; Gillot, P.-Y.; Appel, H.; W?rner, G.; Rundle, C. Resumen cronoestratigráfico de las rocas ígneas de Costa Rica basado en dataciones radiométricas[in Spanish]. J. S. Am. Earth Sci. 1992, 6, 151–168, doi:10.1016/0895-9811(92)90005-J.
[32]  Alvarado, G.E.; Gans, P.B. Sintesis geochronologica del magmatismo, metamorfismo y metalogenia de Costa Rica, America Central[in Spanish]. Rev. Geol. Am. Cent. 2012, 46, 7–122.
[33]  Appel, H.; W?rner, G.; Alvarado-Induni, G.E.; Rundle, C.; Kussmaul-Ruf, S. Age relations in igneous rocks from Costa Rica. Profil 1994, 7, 63–69.
[34]  Gans, P.B.; Alvarado-Induni, G.; Perez, W.; MacMillan, I.; Calvert, A. Neogene Evolution of the Costa Rican Arc and Development of the Cordillera Central; Geological Society of America: Boulder, CA, USA, 2003.
[35]  Vogel, T.A.; Patino, L.C.; Alvarado, G.E.; Gans, P.B. Silicic ignimbrites within the Costa Rican volcanic front: Evidence for the formation of continental crust. Earth Planet. Sci. Lett. 2004, 226, 149–159, doi:10.1016/j.epsl.2004.07.013.
[36]  Denyer, P.; Alvarado, G.E. Mapa Geológico de Costa Rica. [in Spanish]; Librería Francesa: San Jose, Costa Rica, 2007.
[37]  Hayes, J.L.; Holbrook, W.S.; Lizarralde, D.; van Avendonk, H.J.A.; Bullock, A.D.; Mora, M.; Harder, S.; Alvarado, G.E.; Ramirez, C. Crustal structure across the Costa Rican Volcanic Arc. Geochem. Geophys. Geosyst. 2013, 14, 1087–1103.
[38]  Sallarès, V.; Da?obieta, J.J.; Flueh, E.R. Lithospheric structure of the Costa Rican Isthmus: Effects of subduction zone magmatism on an oceanic plateau. J. Geophys. Res. Sol. Ea. 2001, 106, 621–643, doi:10.1029/2000JB900245.
[39]  Vogel, T.A.; Patino, L.C.; Eaton, J.K.; Valley, J.K.; Rose, W.I.; Alvarado, G.E.; Viray, E.L. Origin of silicic magmas along the Central American volcanic front: Genetic relationship to mafic melts. J. Volcanol. Geotherm. Res. 2006, 156, 217–228, doi:10.1016/j.jvolgeores.2006.03.002.
[40]  Leat, P.T.; Smellie, J.L.; Millar, I.L.; Larter, R.D. Magmatism in the South Sandwich Arc. Geol. Soc. Lond. Spec. Publ. 2003, 219, 285–313, doi:10.1144/GSL.SP.2003.219.01.14.
[41]  Smith, I.E.M.; Worthington, T.J.; Stewart, R.B.; Price, R.C.; Gamble, J.A. Felsic volcanism in the Kermadec arc, SW Pacific: Crustal recycling in an oceanic setting. Geol. Soc. Lond. Spec. Publ. 2003, 219, 99–118, doi:10.1144/GSL.SP.2003.219.01.05.
[42]  Tamura, Y.; Tatsumi, Y. Remelting of an andesitic crust as a possible origin for rhyolitic magma in oceanic arcs: An example from the Izu-Bonin arc. J. Petrol. 2002, 43, 1029–1047, doi:10.1093/petrology/43.6.1029.
[43]  Deering, C.D.; Vogel, T.A.; Patino, L.C.; Szymanski, D.W.; Alvarado, G.E. Magmatic processes that generate chemically distinct silicic magmas in NW Costa Rica and the evolution of juvenile continental crust in oceanic arcs. Contrib. Mineral. Petrol. 2012, 163, 259–275, doi:10.1007/s00410-011-0670-z.
[44]  Criss, J.W. Fundamental-Parameters Calculations on a Laboratory Microcomputer. In Advances in X-Ray Analysis; Rhodes, J., Barret, C., Leyden, D., Newkirk, J., Predecki, P., Ruud, C., Eds.; Springer: Berlin, Germany, 1980; pp. 93–97.
[45]  Zhang, Y.; Ni, H.; Chen, Y. Diffusion data in silicate melts. Rev. Mineral. Geochem. 2010, 72, 311–408, doi:10.2138/rmg.2010.72.8.
[46]  Beard, J.S. Crystal-melt separation and the development of isotopic heterogeneities in hybrid magmas. J. Petrol. 2008, 49, 1027–1041, doi:10.1093/petrology/egn015.
[47]  Bacon, C.R.; Lowenstern, J.B. Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth Planet. Sci. Lett. 2005, 233, 277–293, doi:10.1016/j.epsl.2005.02.012.
[48]  Langmuir, C.H.; Vocke, R.D., Jr; Hanson, G.N.; Hart, S.R. A general mixing equation with applications to Icelandic basalts. Earth Planet. Sci. Lett. 1978, 37, 380–392, doi:10.1016/0012-821X(78)90053-5.
[49]  Parker, A. An index of weathering for silicate rocks. Geol. Mag. 1970, 107, 501–504, doi:10.1017/S0016756800058581.
[50]  Patino, L.C.; Velbel, M.A.; Price, J.R.; Wade, J.A. Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala. Chem. Geol. 2003, 202, 343–364, doi:10.1016/j.chemgeo.2003.01.002.
[51]  Ehrlich, R.; Full, W.E. Sorting out Geology, Unmixing Mixtures. In Use and Abuse of Statistical Methods in Earth Sciences; Size, W., Ed.; Oxford University Press: Oxford, UK, 1987; pp. 34–46.
[52]  Full, W.E.; Ehrlich, R.; Klovan, J.E. EXTENDED QMODEL—Objective definition of external end members in the analysis of mixtures. Math. Geol. 1981, 13, 331–344, doi:10.1007/BF01031518.
[53]  Full, W.E.; Ehrlich, R.; Bezdek, J.C. FUZZY QMODEL—A new approach for linear unmixing. Math. Geol. 1982, 14, 259–270, doi:10.1007/BF01032888.
[54]  Ehrlich, R.; Wenning, R.J.; Johnson, G.; Su, S.H.; Paustenbach, D.J. A mixing model for polychlorinated dibenzo-p-dioxins and dibenzofurans in surface sediments from Newark Bay, New Jersey using polytopic vector analysis. Arch. Environ. Con. Tox. 1994, 27, 486–500.
[55]  Huntley, S.L.; Carlson-Lynch, H.; Johnson, G.W.; Paustenbach, D.J.; Finley, B.L. Identification of historical PCDD/F sources in Newark Bay Estuary subsurface sediments using polytopic vector analysis and radioisotope dating techniques. Chemosphere 1998, 36, 1167–1185, doi:10.1016/S0045-6535(97)10008-X.
[56]  Wenning, R.J.; Erickson, G.A. Interpretation and analysis of complex environmental data using chemometric methods. TrAC Trend Anal. Chem. 1994, 13, 446–457, doi:10.1016/0165-9936(94)85026-7.
[57]  Deering, C.D.; Cole, J.W.; Vogel, T.A. A rhyolite compositional continuum governed by lower crustal source conditions in the Taupo Volcanic Zone, New Zealand. J. Petrol. 2008, 49, 2245–2276, doi:10.1093/petrology/egn067.
[58]  Bryan, W.B.; Finger, L.; Chayes, F. Estimating proportions in petrographic mixing equations by least-squares approximation. Science 1969, 163, 926–927.
[59]  Johnson, G.W.; Ehrlich, R.; Full, W.E. Principal Components Analysis and Receptor Models in Environmental Forensics. In An Introduction to Environmental Forensics; Murphy, B.L., Morrison, R.D., Eds.; Academic Press: San Diego, CA, USA, 2002; pp. 461–515.
[60]  Miesch, A.T. Q-Mode Factor Analysis of Geochemical and Petrologic Data Matrices with Constant Row-Sums: An Extension of the Method of Q-Mode Factor (Vector) Analysis to Increase Its Usefulness in Geochemical and Petrologic Investigations; U.S. Government Printing Office: Washington, DC, USA, 1976.
[61]  Kent, A.J.; Darr, C.; Koleszar, A.M.; Salisbury, M.J.; Cooper, K.M. Preferential eruption of andesitic magmas through recharge filtering. Nat. Geosci. 2010, 3, 631–636, doi:10.1038/ngeo924.
[62]  Ruprecht, P.; Bergantz, G.W.; Cooper, K.M.; Hildreth, W. The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity. J. Petrol. 2012, 53, 801–840, doi:10.1093/petrology/egs002.
[63]  Davidson, J.P.; Arculus, R.J. The Significance of Phanerozoic Arc Magmatism in Generating Continental Crust. In Evolution and Differentiation of the Continental Crust; Brown, M., Rushmer, T., Eds.; Cambridge University Press: New York, NY, USA, 2006; pp. 135–172.
[64]  Rudnick, R.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 1–64.
[65]  Patino, L.C.; Carr, M.J.; Feigenson, M.D. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib. Mineral. Petrol. 2000, 138, 265–283, doi:10.1007/s004100050562.
[66]  Szymanski, D.W. Magmatic Evolution of Ignimbrites in the Bagaces Formation, Guanacaste Province, Costa Rica; Michigan State University: Ann Arbor, MI, USA, 2007.
[67]  Dufek, J.; Bachmann, O. Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics. Geology 2010, 38, 687–690, doi:10.1130/G30831.1.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413