全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geosciences  2013 

Spatial Evolution of the Chromium Contamination in Soils from the Assopos to Thiva Basin and C. Evia (Greece) and Potential Source(s): Anthropogenic versus Natural Processes

DOI: 10.3390/geosciences3020140

Keywords: contamination, Cr(VI), soil, water, plant, Greece

Full-Text   Cite this paper   Add to My Lib

Abstract:

The investigation of the contamination in soil, plants and groundwater revealed a spatial evolution, with an increasing trend in the Cr, Fe, Ni, Mn and Co contents in soils from the Assopos to Thiva basin, followed by C. Evia and Ni-laterite deposits, suggesting that the latter and their parent ophiolites are a potential source for these metals. In contrast, the contamination in groundwater by Cr(VI), ranging from 2 to 360 μg/L Cr, and a varying degree of salinization is probably due to both human activities and natural processes. A diverse source for the contamination of soil and groundwater in the Assopos-Thiva basins is consistent with the increasing trend of the Mg/Si ratio and Cr(VI) concentration in water. The use of deep karst-type aquifer instead of the shallow-Neogene one may provide a solution to the crucial environmental problem. The selective extraction by EDTA and alkaline solution showed that Cr and Fe are less available than Mn. The Cr contents in plants range from <1 to tens of mg/kg, due probably to the high resistance of chromite. However, the average Cr total contents in plants/crops are higher than normal or sufficient values, whilst Cr total accumulation [(% metals in plants × 100)/metal in soil] and Cr(VI) accumulation are relatively low. There is a very good positive correlation between accumulation factors for Cr and Fe ( R 2 = 0.92), suggesting a similarity concerning their uptake.

References

[1]  Jardine, P.M.; Mehlhorn, T.L.; Bailey, W.B.; Brooks, S.C.; Fendorf, S.; Gentry, R.W.; Phelps, T.J.; Saiers, J.E. Geochemical processes governing the fate and transport of chromium (III) and chromium (VI). Vadose Zone J. 2011, 10, 1058–1070, doi:10.2136/vzj2010.0102.
[2]  Cross, H.J.; Faux, S.P.; Sadhra, S.; Sorahan, T.; Levy, L.S.; Braithwaite, R.; McRoy, C.; Hamilton, L.; Calvert, I. Criteria Document for Hexavalent Chromium; International Chromium Development Association (ICDA): Paris, France, 1997.
[3]  Commission of the European Communities. Council Directive (98/83/EC) of 3 November 1998 on the quality of water intended for human consumption. Offic. J. Eur. Commun. 1998, L330, 32–54.
[4]  Fantoni, D.; Brozzo, G.; Canepa, M.; Cipolli, F.; Marini, L.; Ottonello, G.; Zuccolini, M.V. Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environ. Geol. 2002, 42, 871–882, doi:10.1007/s00254-002-0605-0.
[5]  Ganas, A.; Aerts, J.; Astaras, T.; de Vente, J.; Frogoudakis, E.; Lambrinos, N.; Riskakisi, C.; Oikonomidis, D.; Filippidis, A.; Kassoli-Fournaraki, A. The use of Earth observation and decision support systems in the restoration of open-cast nickel mines in Evia, central Greece. Int.J. Remote Sens. 2004, 25, 3261–3274, doi:10.1080/01431160310001638660.
[6]  Papastergios, G.; Filippidis, A.; Fernandez-Turiel, J.L.; Gimeno, D.; Sikalidis, C. Distribution of potentially toxic elements in sediments of an industrialized coastal zone of the Northern Aegean Sea. Environ. Forensics 2010, 11, 282–292, doi:10.1080/15275922.2010.494992.
[7]  Linos, A.; Petralias, A.; Christophi, C.; Christoforidou, E.; Kouroutou, P.; Stoltidis, M.; Veloudaki, A.; Tzala, E.; Makris, K.; Karagas, M. Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of Greece—An ecological study. Environ. Health 2011, 10, 50:1–50:8.
[8]  Papastergios, G.; Filippidis, A.; Fernandez-Turiel, J.L.; Gimeno, D.; Sikalidis, C. Surface soil geochemistry for environmental assessment in Kavala Area, Northern Greece. Water Air Soil Pollut. 2011, 216, 141–152, doi:10.1007/s11270-010-0522-x.
[9]  Vasilatos, Ch.; Megremi, I.; Economou-Eliopoulos, M. Geochemical Characteristics of Natural Waters Contaminated by Hexavalent Chromium, in Eastern Sterea Hellas, Greece. In Proceedings of the XIX Congress of the Carpathian Balkan Geological Association; Christofides, G., Kantiranis, N., Kostopoulos, D.S., Chatzipetros, A.A., Eds.; Scientific Annales, School of Geology, Aristotle University of Thessaloniki: Thessaloniki, Greece, 2010; Volume 99, pp. 347–353.
[10]  Petrotou, A.; Skordas, K.; Papastergios, G.; Filippidis, A. Factors affecting the distribution of potentially toxic elements in surface soils around an industrialized area of northwestern Greece. Environ. Earth Sci. 2012, 65, 823–833, doi:10.1007/s12665-011-1127-4.
[11]  Economou-Eliopoulos, M.; Megremi, I.; Atsarou, C.; Theodoratou, Ch.; Vasilatos, Ch. Contamination at the Assopos—Thiva Basins and C. Evia, Greece: An Integrated Approach on the Soil, Plant-Crops and Graoundwater System. In Proceedings of 3rd International Conference on Industrial and Hazardous Waste Management, Chania, Greece, 12–14 September 2012.
[12]  Papanikolaou, D.; Mariolakos, I.; Lekkas, E.; Lozios, S. Morphotectonic observations at the Assopos basin and the coastal zone of Oropos. Contribution to the neotectonics of Northern Attiki. Bull. Geol. Soc. Greece 1988, 20, 251–267.
[13]  Chatoupis, Th.; Fountoulis, I. The neotectonic deformation of N. Parnis Mt, (Attica, Greece). Bull. Geol. Soc. Greece 2004, 36, 1588–1597.
[14]  Giannoulopoulos, P.A. Preliminary Hydrological—Hydrochemical Research, Contamination of Ground Water in the Assopos Basin, Boeotia Region; Institute of Geology and Mineral Exploration (IGME): Athens, Greece, 2009. Internal Report.
[15]  Standard Methods for the Examination of Water and Wastewater, 17th ed.; Water Pollution Control Federation: Washington, DC, USA, 1989.
[16]  American Society for Testing and Materials. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils; Method D 2974-00; American Society for Testing and Materials: West Conshohocken, PA, USA, 2000.
[17]  Megremi, I. Distribution and bioavailability of Cr in Central Evia, Greece. Cent. Eur. J. Geosci. 2009, 2, 103–123, doi:10.2478/v10085-009-0042-3.
[18]  Megremi, I. Controlling Factors of the Mobility and Bioavailability of Cr and Other Metals at the Environment of Ni-Laterites. Ph.D. Thesis, University of Athens, Athens, Greece, 17 March 2010.
[19]  Economou-Eliopoulos, M.; Megremi, I.; Vasilatos, Ch. Factors controlling the heterogeneous distribution of Cr(VI) in soil, plants and groundwater: Evidence from the Assopos basin, Greece. Chem. Erde 2011, 71, 39–52, doi:10.1016/j.chemer.2011.01.001.
[20]  Economou-Eliopoulos, M.; Antivach, D.; Vasilatos, Ch.; Megremi, I. Evaluation of the Cr(VI) and other toxic element contamination and their potential sources: The case of the Thiva basin (Greece). Geosci. Front. 2012, 3, 1–17, doi:10.1016/j.gsf.2011.10.002.
[21]  Atsarou, C. Distribution of Chromium and Other Heavy Metals in Groundwater, Soil and Crops at the Avlona Area, Attica: Factors Controlling Their Bioavailability. Master’s Thesis, University of Athens, Athens, Greece, 17 June 2010.
[22]  Theodoratou, Ch. Assessment of Contamination Due to Cr (VI) and Other Heavy Metals at the Oropos Area: Interaction in the System Soil-Plant-Water. Master’s Thesis, University of Athens, Athens, Greece, 26 May 2011.
[23]  Papafilippaki, A.; Gasparatos, D.; Haidouti, C.; Stavroulakis, G. Total and bioavailable forms of Cu, Zn, Pb and Cr in agricultural soils: A study from the hydrological basin of Keritis, Chania, Greece. Glob. NEST J. 2007, 9, 201–206.
[24]  Kabata-Pendlas, A. Trace Elements in Soils and Plants; CRC Press, Inc.: Boca Raton, FL, USA, 2000.
[25]  Kampouroglou, E. Investigation of the Contamination in the Carbonate Basin of Varnava (Attica) by Arsenic and Heavy Metals and Their Source. Master’s Thesis, University of Athens, Athens, Greece, 2 December 2012.
[26]  Vasilatos, Ch.; Megremi, I.; Economou-Eliopoulos, M.; Mitsis, I. Hexavalent chromium and other toxic elements in natural waters in Thiva-Tanagra-Malakasa basin, Greece. Hell. J. Geosci. 2008, 43, 57–66.
[27]  Moraki, A. Assessment of groundwater contamination by hexavalent chromium and its remediation at Avlida area, Central Greece. Hell. J. Geosci. 2010, 45, 175–183.
[28]  Golightly, J.P. Nickeliferious laterite deposits. Econ. Geol. 1981, 75, 70–735.
[29]  Navrotsky, A.; Mazeina, L.; Majlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science 2008, 319, 1635–1638, doi:10.1126/science.1148614.
[30]  Economou-Eliopoulos, M. Apatite and Mn, Zn, Co-enriched chromite in Ni-laterites of northern Greece and their genetic significance. J. Geochem. Explor. 2003, 80, 41–54, doi:10.1016/S0375-6742(03)00181-X.
[31]  Lu, Z.; Zhu, J.; Payzant, A.; Paranthaman, M.P. Electrical conductivity of the manganese chromite spinel solid solution. J. Am. Ceram. Soc. 2005, 88, 1050–1053, doi:10.1111/j.1551-2916.2005.00205.x.
[32]  Princivalle, F.; Margignago, F.; Dal Negro, A. Kinetics of cation ordering in natural Mg (Al, Cr3+)2O4 spinels. Am. Mineral. 2006, 91, 313–318, doi:10.2138/am.2006.1894.
[33]  Masel, R.I. Chemical Kinetics and Catalysis; Wiley Interscience: New York, NY, USA, 2001.
[34]  Asyminas, G. Assessment of the Environmental Impact by Chromium and Other Heavy Metals in Soil and Groundwater of the Assopos Basin: the Role of the Organic Matter to the Metal Bio-Availability. Master’s Thesis, University of Athens, Athens, Greece, 2 January 2012.
[35]  Stock, E.L. Minerals as energy sources for microorganisms. Econ. Geol. 2009, 104, 1235–1248, doi:10.2113/gsecongeo.104.8.1235.
[36]  Zayed, A.M.; Terry, N. Chromium in the environment: factors affecting biological remediation. Plant Soil 2003, 249, 139–156, doi:10.1023/A:1022504826342.
[37]  Manceau, A.; Schlegel, M.L.; Musso, M.; Sole, V.A.; Gauthier, C.; Petit, P.A.; Trolard, F. Crystal chemistry of trace elements in natural and synthetic goethite. Geochim. Cosmochim. Acta 2000, 64, 3643–3661, doi:10.1016/S0016-7037(00)00427-0.
[38]  Murray, J.W. The interaction of cobalt with hydrous manganese dioxide. Geochim. Cosmochim. Acta 1975, 39, 635–648, doi:10.1016/0016-7037(75)90007-1.
[39]  Shanker, A.K.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753, doi:10.1016/j.envint.2005.02.003.
[40]  Scott, D.M.; Grunthaner, P.J.; Tsaur, B.Y.; Nicolet, M.-A.; Mayer, J.W. The Effect of Oxygen on the Growth Kinetics of Nickel Silicides. In Proceedings 80-2, Symposium on Thin Film Interfaces and Interactions, Los Angeles, CA, USA, Fall 1979; Baglin, J.E.E., Poate, J.M., Eds.; 1980; p. 148.
[41]  Liesack, W.; Schnell, S.; Revsbech, N.P. Microbiology of flooded rice paddies. FEMS Microbiol. Rev. 2000, 24, 625–645, doi:10.1111/j.1574-6976.2000.tb00563.x.
[42]  Hansel, C.M.; Wielinga, B.W.; Fendorf, S.R. Structural and compositional evolution of Cr/Fe solids after indirect chromate reduction by dissimilatory iron-reducing bacteria. Geochim. Cosmochim. Acta 2003, 67, 401–412.
[43]  Bonet, A.; Poschenrieder, C.; Barcelo, J. Chromium III ion interaction in Fe deficient bean plants. I. Growth and Nutrient content. J. Plant Nutr. 1991, 14, 403–414, doi:10.1080/01904169109364211.
[44]  Lemanceau, P.; Bauer, B.; Kraemer, K.; Stand Briat, J.-F. Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 2009, 321, 513–535, doi:10.1007/s11104-009-0039-5.
[45]  Tziritis, E.P. Assessment of NO3? contamination in a karstic aquifer, with the use of geochemical data and spatial analysis. Environ. Earth Sci. 2009, 60, 1381–1390, doi:10.1007/s12665-009-0274-3.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133