The conservation of the historic stone heritage has great importance when this material characterizes the image of a city, as it happens in Syracuse (Sicily). Its historical buildings are afflicted by a heavy state of deterioration due to the particular microclimate, to pollution and to neglect endured over time. This article reports the investigations made on limestone samples from historic fa?ades of the city and from the neighboring quarries still in operation, in order to understand the petrographic typology, the reaction to the degradation over time, the possible maintenance and recovery interventions, and the correct applications in buildings of new construction. For this aim, bulk and surface analysis have been made both on the quarry materials and on the corresponding aged materials. It is therefore possible to define the types of rock most suitable for the use in contemporary architecture guaranteeing criteria of perfect biocompatibility. In this way a natural material can be employed in traditional and innovative uses and ensure both the sustainability of the interventions and the continuity of a consolidated tradition.
References
[1]
Pavan, V. Dove va a Finire L’architettura di Pietra[in Italian]. Available online: http://www.architetturadipietra.it/wp/?p=1312 (accessed on 19 June 2009).
[2]
Sariisik, A.; Sariisik, G.; Senturk, A. Characterization of physical and mechanical properties of natural stones affected by ground water under different ambient conditions. Ekoloji 2010, 19, 88–96, doi:10.5053/ekoloji.2010.7713.
[3]
Espinosa-Marzal, R.M.; Scherer, G.W. Mechanisms of damage by salt. Geol. Soc. Spec. Publ. 2010, 331, 61–77, doi:10.1144/SP331.5.
[4]
Consiglio Nazionale delle Ricerche, Il Centro Storico di Ortygia. [in Italian]; [CD-ROM], Comune di Siracusa, Siracusa, Italy, 2000.
[5]
Altavilla, C.; Ciliberto, E. Cultural Heritage Materials: An XPS Approach; Nova Science: New York, NY, USA, 2011.
[6]
UNI-EN. Beni Culturali—Materiali Lapidei Naturali ed Artificiali. Determinazione del Contenuto di Sali Solubili. [in Italian]; CNR-ICR: Roma, Italy, 2003. EN-11087.
[7]
Assorbimento D’acqua per Immersione Totale. Capacità di Imbibizione. [in Italian]; CNR-ICR: Roma, Italy, 1981. NORMAL 7/81.
[8]
Misura Dell’indice di Asciugamento (Drying Index). [in Italian]; CNR-ICR: Roma, Italy, 1988. NORMAL 29/88.
[9]
UNI-EN. Metodi di Prova per Pietre Naturali. Determinazione del Coefficiente di Assorbimento D’acqua per Capillarità. [in Italian]; EN-1925; CNR-ICR: Roma, Italy, 2000.
[10]
UNI-EN. Metodi di Prova per Pietre Naturali. Determinazione Della Resistenza Alla Cristallizzazione dei Sali. [in Italian]; CNR-ICR: Roma, Italy, 2001. EN-12370.
[11]
UNI-EN. Determinazione Della Resistenza a Compressione. [in Italian]; CNR-ICR: Roma, Italy, 2000. EN-1926.
[12]
Lo Giudice, A.; Mazzoleni, P.; Pezzino, A; Punturo, R.; Russo, L.G. Building stone employed in the historical monuments of Eastern Sicily (Italy). An example: The ancient city centre of Catania. Environ. Geol. 2006, 50, 156–169, doi:10.1007/s00254-006-0195-3.
[13]
Montana, G.; Oddo, I.A.; Randazzo, L.; Valenza, M. The growth of “black crusts” on calcareous building stones in Palermo (Sicily): A first appraisal of anthropogenic and natural sulphur sources. Environ. Geol. 2008, 56, 367–380, doi:10.1007/s00254-007-1175-y.
[14]
Havelcova, M.; Sykorova, I.; Trejtnarova, H.; Zeman, A. Carbon air pollution reflected in deposits on chosen building materials of Prague Castle. Sci. Total Environ. 2011, 409, 4606–4611, doi:10.1016/j.scitotenv.2011.07.025.
[15]
Ciliberto, E.; La Delfa, S.; Panarello, S. Characterization of black scabs and role of atmospheric pollutants on their formation. In Tecniche di Analisi di Materiali nei Beni Culturali; Brai, M., Casaletto, M.P., Maccotta, A., Schillaci, S., Eds.; Carbone: Palermo, Italy, 2007; pp. 131–136.
[16]
Torok, A. Black crusts on travertine: Factors controlling development and stability. Environ. Geol. 2008, 56, 583–594.
[17]
Moropoulou, A.; Bisbikou, K.; Torfs, K.; van Grieken, R.; Zezza, F.; Macri, F. Origin and growth of weathering crusts on ancient marbles in industrial atmosphere. Atmos. Environ. 1998, 32, 967–982, doi:10.1016/S1352-2310(97)00129-5.
[18]
Ciliberto, E.; Fragalà, I.; Spoto, G. Analizing a Sicilian Renaissance Portal. Anal. Chem. 1995, 67, 249A–253A, doi:10.1021/ac00103a002.
[19]
Ciliberto, E.; Spoto, G. X ray photoelectron spectroscopy and auger electron spectroscopy. In Modern Analytical Methods in Art and Archaeology; Ciliberto, E., Spoto, G., Eds.; John Wiley and Sons: New York, NY, USA, 2000; Volume 155, pp. 363–404.
[20]
Feng, B.; Chen, J.; Zhang, X. Interaction of calcium and phosphate in apatite coating on titanium with serum albumin. Biomaterials 2002, 23, 2499–2507, doi:10.1016/S0142-9612(01)00384-2.
[21]
Squarcialupi, M.C.; Bernardini, G.P.; Faso, V.; Atrei, A.; Rovida, G. Characterisation by XPS of the corrosion patina formed on bronze surfaces. J. Cult. Herit. 2002, 3, 199–204, doi:10.1016/S1296-2074(02)01179-2.
[22]
Calabrò, C.; Cultrone, G.; Pezzino, A.; Russo, L.G.; Uro?evi?, M. Influence of pore system characteristics on limestone vulnerability: A laboratory study. Environ. Geol. 2008, 54, 1271–1281, doi:10.1007/s00254-007-0909-1.
[23]
In this case, grey energy is the sum of all energy required to produce goods, like material extraction, transport, manufacture, assembly, installation, dis-assembly, deconstruction and/or decomposition as well as human and secondary resources.
[24]
Senosiain, J. Bio-Architecture; Elsevier Architectural Press: Oxford, UK, 2003.
[25]
Wright, F.L. The Natural House; Bramhall House: New York, NY, USA, 1954.
[26]
Dal Buono, V. Pietre Agglomerate tra Natura e Artificio [in Italian]; Blog Architettura di pietra. Available online: http://www.architetturadipietra.it/wp/?p=1212 (accessed on 19 June 2009).