全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geosciences  2013 

Geodynamic Reconstructions of the Australides—1: Palaeozoic

DOI: 10.3390/geosciences3020311

Keywords: Australia, Antarctica, Gondwana, Gondwanides, Australides, Palaeozoic, plate tectonics, geodynamic reconstructions

Full-Text   Cite this paper   Add to My Lib

Abstract:

A full global geodynamical reconstruction model has been developed at the University of Lausanne over the past 20 years, and is used herein to re-appraise the evolution of the Australides from 600 to 200 Ma. Geological information of geodynamical interest associated with constraints on tectonic plate driving forces allow us to propose a consistent scenario for the evolution of Australia–Antarctica–proto-Pacific system. According to our model, most geodynamic units (GDUs) of the Australides are exotic in origin, and many tectonic events of the Delamerian Cycle, Lachlan SuperCycle, and New England SuperCycle are regarded as occurring off-shore Gondwana.

References

[1]  Vaughan, A.; Leat, P.; Pankurst, R. Terrane processes at the margin of Gondwana: Introduction. Geological Society London Special Publications 2005, 246, 1–22, doi:10.1144/GSL.SP.2005.246.01.01.
[2]  Vérard, C. Palaeozoic Palaeomagnetism of Southeastern Australia: Implications for the APW Path of Gondwana. Ph.D. Thesis, Ludwig-Maximilians-Universit?t München, Munich, Germany, 2 June 2004.
[3]  Glen, R. The Tasmanides of eastern Australia. Geological Society London Special Publications 2005, 246, 23–96, doi:10.1144/GSL.SP.2005.246.01.02.
[4]  Vérard, C.; Stampfli, G.M. Geodynamic reconstructions of the Australides—2: Mesozoic–Cainozoic. Geosciences 2013, 3. in press.
[5]  Stump, E.; White, A.; Borg, S. Reconstruction of Australia and Antarctica: Evidence from granites and recent mapping. Earth Planet. Sci. Lett. 1986, 79, 348–360, doi:10.1016/0012-821X(86)90191-3.
[6]  Borg, S.; de Paolo, D. A tectonic model of the Antarctic Gondwana margin with implications for southeastern Australia: Isotopic and geochemical evidence. Tectonophysics 1991, 196, 339–358, doi:10.1016/0040-1951(91)90329-Q.
[7]  Cooper, R.; Tulloch, A. Early Palaeozoic terranes in New Zealand and their relationship to the Lachlan Fold Belt. Tectonophysics 1992, 214, 129–144, doi:10.1016/0040-1951(92)90193-A.
[8]  Gibson, G. Medium-high-pressure metamorphic rocks of the Tuhua Orogen, western New Zealand, as lower crustal analogues of the Lachlan Fold Belt, SE Australia. Tectonophysics 1992, 214, 145–157, doi:10.1016/0040-1951(92)90194-B.
[9]  Glen, R.; Dallmeyer, R.; Black, L. Isotopic dating of basin inversion—The Palaeozoic Cobar Basin, Lachlan Orogen, Australia. Tectonophysics 1992, 214, 249–268, doi:10.1016/0040-1951(92)90200-P.
[10]  Glen, R.; Scheibner, E.; van den Berg, A. Paleozoic intraplate escape tectonics in Gondwanaland and major strike-slip duplication in the Lachlan Orogen of southeastern Australia. Geology 1992, 20, 795–798.
[11]  Sutherland, R. Basement geology and tectonic development of the greater New Zealand region: An interpretation from regional magnetic data. Tectonophysics 1999, 308, 341–362, doi:10.1016/S0040-1951(99)00108-0.
[12]  Veevers, J. Phanerozoic Earth History of Australia; Clarendon Press: Oxford, UK, 1984.
[13]  Veevers, J. Billion-Year Earth History of Australia and Neighbours in Gondwanaland; GEMOC Press: Sydney, Australia, 2000.
[14]  Veevers, J. Atlas of Billion-Year Earth History of Australia and Neighbours in Gondwanaland; GEMOC Press: Sydney, Australia, 2001.
[15]  Veevers, J. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci. Rev. 2004, 68, 1–132, doi:10.1016/j.earscirev.2004.05.002.
[16]  Veevers, J. Pan-African is Pan-Gondwanaland: Oblique convergence drives rotation during 650–500 Ma assembly. Geology 2010, 31, 1–132.
[17]  Gray, D.; Foster, D. Orogenic concepts—Application and definition: Lachlan Fold Belt, eastern Australia. Am. J. Sci. 1997, 297, 859–891, doi:10.2475/ajs.297.9.859.
[18]  Gray, D.; Foster, D.; Bierlein, F. Geodynamics and metallogeny of the Lachlan Orogen. Austr. J. Earth Sci. 2002, 49, 1041–1056, doi:10.1046/j.1440-0952.2002.00962.x.
[19]  Fergusson, C.; Coney, P. Convergence and intraplate deformation in the Lachlan Fold Belt of southeastern Australia. Tectonophysics 1992, 214, 417–439, doi:10.1016/0040-1951(92)90208-N.
[20]  Collins, W.; Vernon, R. Palaeozoic arc growth, deformation and migration across the Lachlan Fold Belt, southeastern Australia. Tectonophysics 1992, 214, 381–400, doi:10.1016/0040-1951(92)90206-L.
[21]  Foster, D.; Gray, D.; Spaggiari, C.; Kamenov, G.; Bierlein, F. Palaeozoic Lachlan Orogen, Australia; Accretion and construction of continental crust in a marginal ocean setting: Isotopic evidence from cambrian metavolcanic rocks. Geological Society London Special Publications 2009, 318, 329–349, doi:10.1144/SP318.12.
[22]  Stampfli, G.; Borel, G. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 2002, 196, 17–33, doi:10.1016/S0012-821X(01)00588-X.
[23]  Stampfli, G.; Borel, G. The TRANSMED transects in space and time: Constraints on the Paleotectonic evolution of the Mediterranean domain. In The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle; Cavazza, W., Roure, F., Spakman, W., Stampfli, G., Ziegler, P., Eds.; Springer Verlag: Berlin, Germany, 2004; pp. 53–80.
[24]  Hochard, C. GIS and Geodatabases Application to Global Scale Plate Tectonic Modelling. Ph.D. Thesis, University of Lausanne, Lausanne, Switzerland, 18 April 2008.
[25]  Stampfli, G.; Hochard, C.; Vérard, C.; Wilhem, C.; von Raumer, J. The formation of Pang?a. Tectonophysics 2013, 593, 1–19, doi:10.1016/j.tecto.2013.02.037.
[26]  Müller, R.; Roest, W.; Royer, J.-Y.; Gahagan, L.; Sclater, J. Digital isochrones of the world’s ocean floor. J. Geophys. Res. 1997, 102, 3211–3214.
[27]  Müller, D.; Sdrolias, M.; Gaina, C.; Roest, R. Age, spreading rates and spreading symmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 2008, 9, Q04006:1–Q04006:19.
[28]  De Mets, C.; Gordon, R.; Argus, D.; Stein, S. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 1994, 21, 2191–2194.
[29]  Baes, M.; Govers, R.; Wortel, R. Switching between alternative responses of the lithosphere to continental collision. Geophys. J. Int. 2011, 187, 1151–1174.
[30]  Hafkenscheid, E.; Wortel, R.; Spakman, W. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. J. Geophys. Res. 2006, 111, B08401, doi:10.1029/2005JB003791.
[31]  Webb, P. Mantle Circulation Models: Constraining Mantle Dynamics, Testing Plate Motion History and Calculating Dynamic Topography. Ph.D. Thesis, University of Cardiff, Cardiff, UK, 1 August 2012.
[32]  Torsvik, T.; van der Voo, R. Refining Gondwana and Pangea palaeogeography: Estimates of Phanerozoic non-dipole (octupole) fields. Geophys. J. Int. 2002, 151, 771–794, doi:10.1046/j.1365-246X.2002.01799.x.
[33]  Amante, C.; Eakins, B. NOAA Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center, Marine Geology and Geophysics Division: Boulder, CO, USA, 2009.
[34]  International Commission on Stratigraphy. International Chronostratigraphic Chart, Version 2013/01. Available online: http://www.stratigraphy.org/ICSchart/ChronostratChart2013-01.pdf (accessed on 28 May 2013).
[35]  Crawford, A.; Stevens, B.; Fanning, M. Geochemistry and tectonic setting of some Neoproterozoic and Early Cambrian volcanics in western New South Wales. Austr. J. Earth Sci. 1997, 44, 831–852, doi:10.1080/08120099708728358.
[36]  Wright, G.; McMechan, M.; Potter, D. Structure and Architecture of the Western Canada Basin—Chapter 3. Online Version of the Geological Atlas of the Western Canada Sedimentary Basin (WCSB). 2008. Available online: http://www.ags.gov.ab.ca/publications/wcsb_atlas/atlas.html (accessed on 23 May 2013).
[37]  Burchfiel, B.; Lipman, P.; Zoback, M. The Cordilleran Orogen: Conterminous U.S. The Geology of North America: Volume G-3; Geological Society of America: Boulder, CO, USA, 1992.
[38]  Fitzsimons, I. Proterozoic basement provinces of southern and southwestern Australia, and their Correlation with Antarctica. Geological Society London Special Publications 2003, 206, 93–130, doi:10.1144/GSL.SP.2003.206.01.07.
[39]  Mills, K.J. Geological Survey of New South Wales, Broken Hill, Australia. 2008.
[40]  Stump, E. The Ross Orogen of the Transantarctic Mountains; Cambridge University Press: Cambridge, UK, 1995.
[41]  Tessensohn, F.; Henjes-Kunst, F. Northern Victoria land terranes, Antarctica: Far-travelled or local products? Geological Society London Special Publications 2005, 246, 275–291, doi:10.1144/GSL.SP.2005.246.01.10.
[42]  Rapalini, A. The Accretionary history of the southern South America from the latest Proterozoic to the late Palaeozoic: Some palaeomagnetic constraints. Geological Society London Special Publications 2005, 246, 305–328.
[43]  Van den Berg, A.; Stewart, I. Ordovician terranes of the southeastern Lachlan Fold Belt: Statigraphy, structure and palaeogeographic reconstruction. Tectonophysics 1992, 214, 159–176, doi:10.1016/0040-1951(92)90195-C.
[44]  Fergusson, C.; Tye, S. Provenance of early Palaeozoic sandstones, southeastern Australia, Part 1: Vertical changes through the Bengal fan-type deposit. Sediment. Geol. 1999, 125, 135–151, doi:10.1016/S0037-0738(99)00002-0.
[45]  Colquoun, G.; Fergusson, C.; Tye, S. Provenance of early Palaeozoic sandstones, southeastern Australia, Part 2: Cratonic to arc switching. Sediment. Geol. 1999, 125, 153–163, doi:10.1016/S0037-0738(99)00003-2.
[46]  Van den Berg, A.; Willman, C.; Maher, S. The Tasman Fold Belt System in Victoria: Geology and Mineralisation of Proterozoic to Carboniferous Rocks. Geological Survey of Victoria Special Publication; Geological Survey: Victoria, Australia, 2000.
[47]  Tingey, R. The Geology of Antarctica; Oxford Monographs on Geology and Geophysics 17; Oxford University Press: Oxford, UK, 1991.
[48]  White, S.; Williams, I.; Chappell, B. Berridale 1:100’000 Geological Sheet 8625; Geological Survey of New South Wales: Sydney, Austraila, 1976.
[49]  Scheibner, E.; Basden, H. Geology of New South Wales—Synthesis. Volume 1 Structural Framework; Geological Survey of New South Wales: Sydney, Australia, 1996.
[50]  Spaggiari, C.; Gray, D.; Foster, D. Ophiolite accretion in the Lachlan Orogen, Southeastern Australia. J. Struct. Geol. 2004, 26, 87–112.
[51]  Klootwijk, C. Carboniferous palaeomagnetism of the Rocky Creek Block, northern Tamworth Belt, and the New England pole path. Austr. J. Earth Sci. 2002, 49, 375–405.
[52]  Schmidt, P.; McElhinny, M.; Klootwijk, C. Discussion and reply: Carboniferous palaeomagnetism of the Rocky Creek Block, northern Tamworth Belt, and the New England pole path. Austr. J. Earth Sci. 2003, 50, 129–135.
[53]  Geeve, R.; Schmidt, P.; Roberts, J. Paleomagnetic results indicate pre-Permian counter-clockwise rotation of the southern Tamworth Belt, southern New England Orogen, Australia. J. Geophys. Res. 2002, 107, EPM.4.1–EPM.4.16.
[54]  Li, P.; Rosenbaum, G.; Donchak, P. Structural evolution of the Texas Orocline, eastern Australia. Gondwana Res. 2012, 22, 279–289.
[55]  Ferrari, O.; Hochard, C.; Stampfli, G. An alternative plate tectonic model for the Palaeozoic–Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand–Burma. Tectonophysics 2008, 451, 346–365.
[56]  Wilhem, C. Plate Tectonics of the Altaids. Ph.D. Thesis, University of Lausanne, Lausanne, Switzerland, 11 May 2010.
[57]  Glen, R.; Wyborn, D. Inferred thrust imbrication, deformation gradients and the Lachlan transverse zone in the eastern belt of the Lachlan Orogen. Austr. J. Earth Sci. 1997, 44, 49–68.
[58]  Glen, R.; Walsche, J. Cross-structures in the Lachlan Orogen: The Lachlan Transverse Zone example. Austr. J. Earth Sci. 1999, 46, 641–658.
[59]  Vérard, C.; Glen, R. Magnetic fabrics of Palaeozoic rocks across the Lachlan Transverse Zone from eastern New South Wales. Austr. J. Earth Sci. 2008, 55, 1037–1048.
[60]  Johnston, S.; Borel, G. The odyssey of the Cache Creek terrane, Canadian Cordillera: Implications for accretionary orogens, tectonic setting of Panthalassa, the Pacific superwell, and break-up of Pangea. Earth Planet. Sci. Lett. 2007, 253, 415–428.
[61]  Chablais, J.; Martini, R.; Kobayashi, F.; Stampfli, G. Upper Triassic foraminifers from Japanese Panthalassan mid-oceanic carbonate buildups (Sambosan Accretionary Complex): palaeobiogeographic implications. Micropaleontology 2011, 57, 93–124.
[62]  Flores-Reyes, K. Mesozoic Oceanic Terranes of Southern Central America—Geology, Geochemistry and Geodynamics. Ph.D. Thesis, University of Lausanne, Lausanne, Switzerland, 18 December 2009.
[63]  Korsch, R.; Wake-Dyster, K.; Johnstone, D. Seismic imaging of Late Palaeozoic-Early Mesozoic extensional and contractional structures in the Bowen and Surat basins, eastern Australia. Tectonophysics 1992, 215, 273–294.
[64]  Korsch, R.; Wake-Dyster, K.; Johnstone, D. The Gunnedah Basin–New England Orogen deep seismic reflection profile: Implications for New England tectonics. In Abstract Volume, Conference on the New England Orogen, Eastern Australia; Flood, P., Aitchison, J., Eds.; University of New England: Armidale, Australia, 1993; pp. 85–100.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413