The present work, derived from a full global geodynamic reconstruction model over 600 Ma and based on a large database, focuses herein on the interaction between the Pacific, Australian and Antarctic plates since 200 Ma, and proposes integrated solutions for a coherent, physically consistent scenario. The evolution of the Australia–Antarctica–West Pacific plate system is dependent on the Gondwana fit chosen for the reconstruction. Our fit, as defined for the latest Triassic, implies an original scenario for the evolution of the region, in particular for the “early” opening history of the Tasman Sea. The interaction with the Pacific, moreover, is characterised by many magmatic arc migrations and ocean openings, which are stopped by arc–arc collision, arc–spreading axis collision, or arc–oceanic plateau collision, and subduction reversals. Mid-Pacific oceanic plateaus created in the model are much wider than they are on present-day maps, and although they were subducted to a large extent, they were able to stop subduction. We also suggest that adduction processes ( i. e., re-emergence of subducted material) may have played an important role, in particular along the plate limit now represented by the Alpine Fault in New Zealand.
References
[1]
Gaina, C.; Roest, R.; Müller, D.; Symonds, P. The opening of the Tasman Sea: A gravity anomaly animation. Earth Interact. 1998, 2, 1–23.
[2]
Sutherland, R. Basement geology and tectonic development of the greater New Zealand region: An interpretation from regional magnetic data. Tectonophysics 1999, 308, 341–362, doi:10.1016/S0040-1951(99)00108-0.
[3]
Müller, D.; Gaina, C.; Clarke, S. Seafloor spreading around Australia. In Billion-Year Earth History of Australia and Neighbours in Gondwanaland; Veevers, J., Ed.; GEMOC Press: Sydney, Australia, 2000; pp. 18–28.
[4]
Veevers, J. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci. Rev. 2004, 68, 1–132, doi:10.1016/j.earscirev.2004.05.002.
[5]
Vaughan, A.; Leat, P.; Pankurst, R. Terrane processes at the margin of Gondwana: Introduction. Geological Society London Special Publications 2005, 246, 1–22, doi:10.1144/GSL.SP.2005.246.01.01.
[6]
Vérard, C.; Stampfli, G.M. Geodynamic reconstructions of the Australides—1: Palaeozoic. Geosciences 2013, 3, 311–330.
[7]
Stampfli, G.; Borel, G. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 2002, 196, 17–33, doi:10.1016/S0012-821X(01)00588-X.
[8]
Stampfli, G.; Borel, G. The TRANSMED Transects in Space and Time: Constraints on the Paleotectonic Evolution of the Mediterranean Domain. In The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle; Cavazza, W., Roure, F., Spakman, W., Stampfli, G., Ziegler, P., Eds.; Springer Verlag: Berlin, Germany, 2004; pp. 53–80.
[9]
Hochard, C. GIS and Geodatabases Application to Global Scale Plate Tectonic Modelling. Ph.D. Thesis, University of Lausanne, Lausanne, Switzerland, 18 April 2008.
[10]
Stampfli, G.; Hochard, C.; Vérard, C.; Wilhem, C.; von Raumer, J. The formation of Pang?a. Tectonophysics 2013, 593, 1–19, doi:10.1016/j.tecto.2013.02.037.
[11]
Torsvik, T.; van der Voo, R. Refining Gondwana and Pangea palaeogeography: Estimates of Phanerozoic non-dipole (octupole) fields. Geophys. J. Int. 2002, 151, 771–794, doi:10.1046/j.1365-246X.2002.01799.x.
[12]
Tapley, B.; Ries, J.; Bettadpur, S.; Chambers, D.; Cheng, M.; Condi, F.; Gunter, B.; Kang, Z.; Nagel, P.; Pastor, R.; et al. CGM02—An improved Earth gravity field model from GRACE. J. Geod. 2005, 79, 467–478, doi:10.1007/s00190-005-0480-z.
[13]
Maus, S.; Barckhausen, U.; Berkenbosch, H.; Bournas, N.; Brozena, J.; Childers, V.; Dostaler, F.; Fairhead, J.; Finn, C.; von Frese, R.; et al. EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements. Geochem. Geophy. Geosyst. 2009, 10, Q08005:1–Q08005:12.
[14]
Amante, C.; Eakins, B. NOAA Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center, Marine Geology and Geophysics Division: Boulder, CO, USA, 2009.
[15]
Stagg, H. The structure and origin of Prydz Bay and MacRobertson shelf, East Antarctica. Tectonophysics 1985, 114, 315–340, doi:10.1016/0040-1951(85)90019-8.
[16]
Willcox, J.; Stagg, H. Australia’s southern margin: A product of oblique extension. Tectonophysics 1990, 173, 269–281, doi:10.1016/0040-1951(90)90223-U.
[17]
Stagg, H.M.J. Report of the Planning Workshop on a Marine Geoscience Mapping Program in the Australian Ocean Territory: Gold Creek Homestead, Gungahlin, ACT, 18–20 February, 1997. Australian Geological Survey Organisation, Petroleum and Marine Division: Canberra, Australia, 1997.
[18]
Direen, N.; Borissova, I.; Stagg, H.M.G.; Colwell, J.; Symonds, P. Nature of the continent–ocean transition zone along the southern Australian continental plateau: A comparison of the Naturaliste Plateau, SW Australia, and the central Great Australian Bight sectors. Geological Society London Special Publications 2007, 282, 239–263, doi:10.1144/SP282.12.
[19]
Collot, J.; Geli, L.; Lafoy, Y.; Vially, R.; Cluzel, D.; Klingelh?fer, F.; Nouzé, H. Tectonic history of northern New-Caledonia Basin from deep offshore seismic reflection: Relation to late Eocene obduction in New-Caledonia, southwest Pacific. Tectonics 2008, 27, TC6006:1–TC6006:20.
[20]
Boger, S. Antarctica—Before and after Gondwana. Gondwana Res. 2011, 19, 335–371, doi:10.1016/j.gr.2010.09.003.
[21]
Direen, N.; Boger, S. Comment on “Antarctica—Before and after Gondwana” by S.D. Boger Gondwana Research, Volume 19, Issue 2, March 2011, Pages 335–371. Gondwana Res. 2011, 21, 302–304, doi:10.1016/j.gr.2011.08.008.
[22]
Direen, N.; Stagg, H.M.G.; Symonds, P.; Norton, I. Variations in rift symmetry: Cautionary examples from the Southern Rift System (Australia–Antarctica). Geological Society London Special Publications 2012, 369, doi:10.1144/SP369.4.
[23]
Tikku, A.; Cande, S. On the fit of Broken Ridge and Kerguelen Plateau. Earth Planet. Sci. Lett. 2000, 180, 117–132, doi:10.1016/S0012-821X(00)00157-6.
[24]
Whittaker, J.; Müller, D.; Leitchenkov, G.; Stagg, H.; Sdrolias, M.; Gaina, C.; Goncharov, A. Major Australian-Antarctic plate reorganisation at Hawaiian-Emperor bend time. Science 2007, 318, 83–86, doi:10.1126/science.1143769.
[25]
Whittaker, J.; Müller, D.; Leitchenkov, G.; Stagg, H.; Sdrolias, M.; Gaina, C.; Goncharov, A. Response to comment on “Major Australian-Antarctic plate reorganization at Hawaiian-Emperor bend time”. Science 2008, 321, 490.
[26]
Tikku, A.; Direen, N. Comment on “Major Australian-Antarctic plate reorganisation at Hawaiian-Emperor bend time”. Science 2008, 321, 490, doi:10.1126/science.1157163.
[27]
Stump, E.; White, A.; Borg, S. Reconstruction of Australia and Antarctica: Evidence from granites and recent mapping. Earth Planet. Sci. Lett. 1986, 79, 348–360, doi:10.1016/0012-821X(86)90191-3.
[28]
Borg, S.; de Paolo, D. A tectonic model of the Antarctic Gondwana margin with implications for southeastern Australia: Isotopic and geochemical evidence. Tectonophysics 1991, 196, 339–358, doi:10.1016/0040-1951(91)90329-Q.
[29]
Glen, R.; Scheibner, E.; van den Berg, A. Paleozoic intraplate escape tectonics in Gondwanaland and major strike-slip duplication in the Lachlan Orogen of southeastern Australia. Geology 1992, 20, 795–798, doi:10.1130/0091-7613(1992)020<0795:PIETIG>2.3.CO;2.
[30]
Scheibner, E.; Basden, H. Geology of New South Wales—Synthesis. Volume 1 Structural Framework; Geological Survey of New South Wales: Sydney, Australia, 1996.
[31]
Weissel, J.; Hayes, D. Evolution of the Tasman Sea reappraised. Earth Planet. Sci. Lett. 1977, 36, 77–84, doi:10.1016/0012-821X(77)90189-3.
[32]
Schreckenberger, B.; Roeser, H.; Symonds, P. Marine magnetic anomalies over the Lord Howe Rise and the Tasman Sea: Implications for the magnetization of the lower continental crust. Tectonophysics 1992, 212, 77–97, doi:10.1016/0040-1951(92)90141-R.
[33]
Lafoy, Y.; Brodien, I.; Vially, R.; Exon, N. Structure of the basin and ridge system west of New-Caledonia (Southwest Pacific): A synthesis. Mar. Geophys. Res. 2005, 26, 37–50, doi:10.1007/s11001-005-5184-5.
[34]
Müller, D.; Sdrolias, M.; Gaina, C.; Roest, R. Age, spreading rates and spreading symmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 2008, 9, Q04006:1–Q04006:19.
[35]
Schellart, W.; Lister, G.; Toy, V. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. Earth Sci. Rev. 2006, 76, 191–233, doi:10.1016/j.earscirev.2006.01.002.
[36]
Cooper, R.; Tulloch, A. Early Palaeozoic terranes in New Zealand and their relationship to the Lachlan Fold Belt. Tectonophysics 1992, 214, 129–144, doi:10.1016/0040-1951(92)90193-A.
[37]
Gibson, G. Medium-high-pressure metamorphic rocks of the Tuhua Orogen, western New Zealand, as lower crustal analogues of the Lachlan Fold Belt, SE Australia. Tectonophysics 1992, 214, 145–157, doi:10.1016/0040-1951(92)90194-B.
[38]
Wandres, A.; Bradshaw, J. New Zealand tectonostratigaphy and implications from conglomeratic rocks for the configuration of the SW Pacific margin of Gondwana. Geological Society London Special Publications 2005, 246, 179–216, doi:10.1144/GSL.SP.2005.246.01.06.
[39]
Crook, K.; Feary, D. Development of New Zealand according to the fore-arc model of crustal evolution. Tectonophysics 1982, 87, 65–107.
[40]
Siddoway, C.; Fanning, M. Paleozoic tectonism on the East Gondwana margin: Evidence from Shrimp U-Pb zircon geochronology of a migmatite-granite complex in West Antarctica. Tectonophysics 2009, 477, 262–277, doi:10.1016/j.tecto.2009.04.021.
[41]
Tulloch, A.; Ramezani, J.; Mortimer, N.; Mortensen, J.; van den Bogaard, P.; Maas, R. Cretaceous felsic volcanism in New Zealand and Lord Howe Rise (Zealandia) as a precursor to final Gondwana break-up. Geological Society London Special Publications 2009, 321, 89–118, doi:10.1144/SP321.5.
[42]
Van de Beuque, S.; Auzende, J.-M.; Lafoy, Y.; Bernardel, G.; Nercessian, A.; Régnier, M.; Symonds, P.; Exon, N. Transect Sismique Continu Entre l’Arc des Nouvelles-Hébrides et la Marge Orientale de l’Australie: Programme FAUST (French Australian Seismic Transect) [in French]. Compte Rendu l’Acad. Sci. Ser IIA Sci. Planet. Sci. 1998, 327, 761–768.
[43]
Monnier, C.; Girardeau, J.; Pubellier, M.; Polvé, M.; Permana, H.; Bellon, H. Petrology and geochemistry of the Cyclops ophiolites (Irian Jaya, East Indonesia): Consequenses for the Cenozoic evolution of the north Australian margin. Mineral. Petrol. 1999, 65, 1–28, doi:10.1007/BF01161574.
[44]
Monnier, C.; Girardeau, J.; Pubellier, M.; Permana, H. L’ophiolite de la cha?ne centrale d’Irian Jaya (Indonésie): évidences pétrologiques et géochimiques pour une origine dans un bassin arrière-arc [in French]. Compte Rendu l’Acad. Sci. Ser IIA Sci. Planet. Sci. 2000, 331, 691–699.
[45]
Pubellier, M.; Monnier, C.; Maury, R.; Tamayo, R. Plate kinematics, origin and tectonic emplacement of supra-subduction ophiolites in SE Asia. Tectonophysics 2004, 392, 9–36, doi:10.1016/j.tecto.2004.04.028.
[46]
Lus, W.; McDougall, I.; Davies, H. Age of the metamorphic sole of the Papuan Ultramafic Belt ophiolite, Papua New-Guinea. Tectonophysics 2004, 392, 85–101, doi:10.1016/j.tecto.2004.04.009.
[47]
Parkinson, C.; Miyazaki, K.; Wakita, K.; Barber, A.; Carswell, D. An overview and tectonic synthesis of the pre-Tertiary very-high-pressure metamorphic and associated rocks of Java, Sulawesi and Kalimantan, Indonesia. Isl. Arc 1998, 7, 184–200, doi:10.1046/j.1440-1738.1998.00184.x.
[48]
Mortimer, N.; Tulloch, A.; Spark, R.; Walker, N.; Ladley, E.; Allibone, A.; Kimbrough, D. Overview of the Median Batholith, New Zealand: A new interpretation of the geology of the Median Tectonic Zone and adjacent rocks. J. Afr. Earth Sci. 1999, 29, 257–268, doi:10.1016/S0899-5362(99)00095-0.
[49]
Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 2002, 20, 353–431, doi:10.1016/S1367-9120(01)00069-4.
[50]
Hall, R.; van Hattum, M.; Spakman, W. Impact of India-Asia collision on SE Asia: The record in Borneo. Tectonophysics 2008, 451, 366–389, doi:10.1016/j.tecto.2007.11.058.
[51]
Tingey, R. The Geology of Antarctica; Oxford Monographs on Geology and Geophysics 17; Oxford University Press: Oxford, UK, 1991.
[52]
Cox, K. Karoo igneous activity, and the early stages of the break-up of Gondwanaland. Geological Society London Special Publications 1992, 68, 137–148, doi:10.1144/GSL.SP.1992.068.01.09.
[53]
Duncan, R.; Hooper, R.; Reha?ek, J.; Marsh, J.; Duncan, A. The timing and duration of the Karoo igneous event, southern Gondwana. J. Geophys. Res. 1997, 105, 18127–18138.
[54]
Dalziel, I.; Lawver, L.; Murphy, J. Plumes, orogenesis, and supercontinental fragmentation. Earth Planet. Sci. Lett. 2000, 178, 1–11, doi:10.1016/S0012-821X(00)00061-3.
[55]
Golonka, J.; Bocharova, N.-Y. Hot spot activity and the break-up of Pangea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 161, 46–69.
[56]
Martin, A. Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback. Tectonophysics 2007, 445, 245–272, doi:10.1016/j.tecto.2007.08.011.
[57]
Stump, E. The Ross Orogen of the Transantarctic Moutains; Cambridge University Press: Cambridge, UK, 1995.
[58]
Elliot, D.; Fleming, T. Occurrence and dispersal of magmas in the Jurassic Ferrar large igneous province, Antarctica. Gondwana Res. 2004, 7, 223–237, doi:10.1016/S1342-937X(05)70322-1.
[59]
Rooney, S.; Blankenship, D.; Alley, R.; Bentley, C. Seismic Reflection Profiling of a Sediment-Filled Graben Beneath Ice Stream B, West Antarctica. In , Proceedings of the 5th International Symposium on Antarctica Earth Sciences, Cambridge, UK, 23–28 August 1987; Thomson, M., Crame, J., Thomson, J., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 261–265.
[60]
Bosum, W.; Damaske, D.; Behrendt, J.; Saltus, R. The Aeromagnetic Survey of Northern Victoria Land and the Western Ross Sea during Ganovex IV and a Geophysical-Geological Interpretation. In , Proceedings of the 5th International Symposium on Antarctica Earth Sciences, Cambridge, UK, 23–28 August 1987; Thomson, M., Crame, J., Thomson, J., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 267–272.
[61]
Tessensohn, F.; W?rner, G. The Ross Sea Rift System, Antarctica: Structure, Evolution and Analogues. In , Proceedings of the 5th International Symposium on Antarctica Earth Sciences, Cambridge, UK, 23–28 August 1987; Thomson, M., Crame, J., Thomson, J., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 273–277.
[62]
Cooper, A.; Davey, F.; Hinz, K. Crustal Extension and Origin of Sedimentary Basins Beneath the Ross Sea and Ross Ice Shelf, Antarctica. In , Proceedings of the 5th International Symposium on Antarctica Earth Sciences, Cambridge, UK, 23–28 August 1987; Thomson M. Crame, J., Thomson, J., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 273–277.
[63]
Storey, B.; Mair, B.; Bell, C. The occurrence of Mesozoic ocean floor and ancient continental crust on South Georgia. Geolog. Mag. 1977, 114, 203–208, doi:10.1017/S0016756800044770.
[64]
Mukasa, S.; Dalziel, I. Southermost Andes and South Georgia Island, North Scotia Ridge: Zircon U-Pb and muscovite 40Ar/39Ar age constraints on tectonic evolution of Southwestern Gondwanaland. J. South Am. Earth Sci. 1996, 9, 349–365, doi:10.1016/S0895-9811(96)00019-3.
[65]
Stern, C.; de Witt, M. Rocas Verdes ophiolites, southern South America: Remnants of progressive stage of development of oceanic-type crust in a continental margin back-arc basin. Geological Society London Special Publications 2003, 218, 665–683, doi:10.1144/GSL.SP.2003.218.01.32.
[66]
Vérard, C.; Flores, K.; Stampfli, G. Geodynamic reconstructions of the South America–Antarctica plate system. J. Geodyn. 2012, 53, 43–60, doi:10.1016/j.jog.2011.07.007.
[67]
Flores-Reyes, K. Mesozoic Oceanic Terranes of Southern Central America—Geology, Geochemistry and Geodynamics. Ph.D. Thesis, University of Lausanne, Lausanne, Switzerland, 18 December 2009.
[68]
Taylor, B. The single largest oceanic plateau: Ontong-Java–Manihiki–Hikurangi. Earth Planet. Sci. Lett. 2006, 241, 372–380, doi:10.1016/j.epsl.2005.11.049.
[69]
Henig, A.; Luyendyk, B. The Manihiki Plateau, Hikurangi Plateau, Wishbone Scarp, and Osbourn Trough: A Review and Analysis. In Proceedings of American Geophysical Union Fall Meeting 2007, San Francisco, CA, USA, 10–14 December 2007. Abstract #T12A-01.
[70]
Hauff, F.; Hoernle, K.; Werner, R.; van den Bogaard, P.; Timm, C.; Klügle, A. Geochemistry and Age Data from the Manihiki Plateau (R/V SO193): Multiple Volcanic Events form EM1-FOZO-HIMU Mantle Sources within a Single Oceanic LIP. In Proceedings of American Geophysical Union Fall Meeting 2008, San Francisco, CA, USA, 15–19 December 2008. Abstract #V53A-2117.
[71]
Hoernle, K.; Hauff, F.; van den Bogaard, P.; Werner, R.; Mortimer, N.; Geldmacher, J.; Garbe-Sch?nberg, D.; Davy, B. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus. Geochim. Cosmochim. Acta 2010, 74, 7196–7219, doi:10.1016/j.gca.2010.09.030.
[72]
Tejada, M.-L.; Suzuki, K.; Kuroda, J.; Coccioni, R.; Mahoney, J.; Naohiko, O.; Sakamoto, T.; Tatsumi, Y. Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event. Geology 2009, 37, 855–858, doi:10.1130/G25763A.1.
[73]
Timm, C.; Hoernle, K.; Werner, R.; Hauff, F.; van den Bogaard, P.; Michael, P.; Coffin, M.; Koppers, A. Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: New evidence for a plume origin. Earth Planet. Sci. Lett. 2011, 304, 135–146, doi:10.1016/j.epsl.2011.01.025.
[74]
Tranter, T. Accretion and Subduction Processes along the Pacific Margin of Gondwana, Central Alexander Island. In , Proceedings of the 5th International Symposium on Antarctica Earth Sciences, Cambridge, UK, 23–28 August 1987; Thomson, M., Crame, J., Thomson, J., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 437–441.
[75]
Trouw, R.; Ribeiro, A.; Paciullo, F. Structural and Metamorphic Evolution of the Elephant Island Group and Smith Island, South Shetland Islands. In , Proceedings of the 5th International Symposium on Antarctica Earth Sciences, Cambridge, UK, 23–28 August 1987; Thomson, M., Crame, J., Thomson, J., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 423–428.
[76]
Cluzel, D.; Aitchison, J.; Picard, C. Tectonic accretion and underplating of mafic terranes in the Late Eocene intraoceanic fore-arc of New-Caledonia (Southwest Pacific): Geodynamic implications. Tectonophysics 2001, 340, 23–59, doi:10.1016/S0040-1951(01)00148-2.
[77]
Baes, M.; Govers, R.; Wortel, R. Switching between alternative responses of the lithosphere to continental collision. Geophys. J. Int. 2011, 187, 1151–1174, doi:10.1111/j.1365-246X.2011.05236.x.
[78]
Kellogg, K.; Rowley, P. Tectonic evolution of south-eastern Antarctica Peninsula. In , Proceedings of the 5th International Symposium on Antarctica Earth Sciences, Cambridge, UK, 23–28 August 1987; Thomson, M., Crame, J., Thomson, J., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 461–465.
[79]
Frey, F.; Coffin, M.; Wallace, P.; Weis, D.; Zhao, X.; Wise, S.; W?hnert, V.; Teagle, D.; Saccocia, P.; Reusch, D.; et al. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth Planet. Sci. Lett. 2000, 176, 73–89, doi:10.1016/S0012-821X(99)00315-5.
[80]
Duncan, R. A time frame for construction of the Kerguelen Plateau and Broken Ridge. J. Petrol. 2002, 43, 1109–1119, doi:10.1093/petrology/43.7.1109.
[81]
Wallace, P.; Frey, F.; Weis, D.; Coffin, M. Origin and evolution of the Kerguelen Plateau, Broken Ridge and Kerguelen Archipelago: Editorial. J. Petrol. 2002, 43, 1105–1108, doi:10.1093/petrology/43.7.1105.
[82]
Ingle, S.; Weis, D.; Scoates, J.; Frey, F. Relationship between the early Kerguelen plume and continental flood basalts of the paleo-Eastern Gondwanan margins. Earth Planet. Sci. Lett. 2002, 197, 35–50, doi:10.1016/S0012-821X(02)00473-9.
[83]
Dalziel, I. The Ellsworth Mountains: Critical and Enduringly Enigmatic. In , Proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, CA, USA, 26 August–1 September 2007. USGS Open-File Report 2007–1047, Short Research Paper 004.
[84]
Katz, H. Plate margin transition from oceanic arc–trench to continental system: The Kermadec–New Zealand example. Tectonophysics 1982, 87, 49–64, doi:10.1016/0040-1951(82)90221-9.
[85]
Grobys, J.; Gohl, K.; Eagles, G. Quantitative tectonic reconstructions of Zealandia based on crustal thickness estimates. Geochem. Geophy. Geosyst. 2008, 9, Q01005:1–Q01005:18.
[86]
Davy, B. Bollons Seamount and early New Zealand–Antarctic seafloor spreading. Geochem. Geophy. Geosyst. 2006, 7, Q06021:1–Q06021:18, doi:10.1029/2005GC001191.
[87]
Stock, J.; Molnar, P. Uncertainties in the relative positions of the Australia, Antarctica, Lord Howe, and Pacific plates since the Late Cretaceous. J. Geophys. Res. 1982, 87, 4697–4714, doi:10.1029/JB087iB06p04697.
[88]
Weissel, J.; Watts, A. Tectonic evolution of the Coral Sea Basin. J. Geophys. Res. 1979, 84, 4572–4582, doi:10.1029/JB084iB09p04572.
[89]
Cande, S.; Mutter, J. A revised identification of the oldest sea floor spreading anomalies between Australia and Antarctica. Earth Planet. Sci. Lett. 1982, 58, 151–160, doi:10.1016/0012-821X(82)90190-X.
[90]
Smith, I. Volcanic Evolution in Eastern Papua. Tectonophysics 1982, 87, 315–333, doi:10.1016/0040-1951(82)90231-1.
[91]
Shemenda, A. Modelling of the opening mechanism for certain types of back arc basins. Oceanography 1985, 25, 204–210.
[92]
Hellinger, S. The uncertainties in finite rotations in plate tectonics. J. Geophys. Res. 1981, 86, 9312–9318, doi:10.1029/JB086iB10p09312.
[93]
Avias, J. Overthurst structure of the main ultrabasic New-Caledonian massives. Tectonophysics 1967, 4, 531–541, doi:10.1016/0040-1951(67)90017-0.
[94]
Paris, J.-P. Géologie de la Nouvelle-Calédonie: Un Essai de Synthèse [in French]; Mémoires du Bureau de Recherches Géologiques et Minières (B.R.G.M.) Volume 113; B.R.G.M.: Paris, France, 1981.
[95]
Chardon, D.; Chevillotte, V. Morphotectonic evolution of the New-Caledonia ridge (Pacific southwest) from post-obduction tectonosedimentary record. Tectonophysics 2006, 420, 473–491, doi:10.1016/j.tecto.2006.04.004.
[96]
Weissel, J.; Watts, A.; Lapouille, A. Magnetic anomaly evidence for late Paleocene to late Eocene seafloor in the southern New-Hebrides Basin. J. Geophys. Res. 1981, 87, 243–251.
[97]
Weissel, J.; Watts, A. Tectonic complexities in the South Fiji marginal basin. Earth Planet. Sci. Lett. 1975, 28, 121–126, doi:10.1016/0012-821X(75)90219-8.
[98]
Ballance, P.; Pettinga, J.; Webb, C. A model of the Cenozoic evolution of northern New Zealand and adjacent areas of the southwest Pacific. Tectonophysics 1982, 87, 37–48, doi:10.1016/0040-1951(82)90220-7.
[99]
Davey, F. The structure of the South Fiji Basin. Tectonophysics 1982, 87, 185–241, doi:10.1016/0040-1951(82)90227-X.
[100]
Weissel, J. Evolution of the Lau Basin by the growth of small plates. In Island Arcs, Deep Sea Trenches and Back-Arc Basins; Talwani, M., Pitman, W.C., III, Eds.; Maurice Ewing Series Volume 1; American Geophysical Union: Washington, DC, USA, 1977; pp. 429–436.
[101]
Bird, P. An updated digital model of plate boundaries. Geochem. Geophy. Geosyst. 2003, 4, 1027:1–1027:52, doi:10.1029/2001GC000252.
[102]
Chase, C. Tectonic history of the Fiji Plateau. Geolog. Soc. Am. Bull. 1971, 82, 3087–3109, doi:10.1130/0016-7606(1971)82[3087:THOTFP]2.0.CO;2.
[103]
Ruellan, E.; Lagabrielle, Y. Subductions et ouvertures océaniques dans le Sud-Ouest Pacifique [in French]. Géomorphol. Relief Process. Environ. 2005, 2, 121–142, doi:10.4000/geomorphologie.307.
[104]
Lagabrielle, Y.; Goddéris, Y.; Donnadieu, Y.; Malavieille, J.; Suarez, M. The tectonic history of Drake Passage and its possible impacts on global climate. Earth Planet. Sci. Lett. 2009, 279, 197–211, doi:10.1016/j.epsl.2008.12.037.