全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Subsurface Transport Behavior of Micro-Nano Bubbles and Potential Applications for Groundwater Remediation

DOI: 10.3390/ijerph110100473

Keywords: micro-nano bubbles (MNBs), size distribution, hydraulic conductivity, dissolved oxygen (DO)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Micro-nano bubbles (MNBs) are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO) in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.

References

[1]  Attard, P.; Moody, M.P.; Tyrrell, J.W.G. Nanobubbles: The big picture. Physica A: Stat. Mech. Appl. 2002, 314, 696–705, doi:10.1016/S0378-4371(02)01191-3.
[2]  Chu, L.-B.; Xing, X.-H.; Yu, A.-F.; Zhou, Y.-N.; Sun, X.-L.; Jurcik, B. Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemosphere 2007, 68, 1854–1860, doi:10.1016/j.chemosphere.2007.03.014.
[3]  Chu, L.-B.; Xing, X.-H.; Yu, A.-F.; Sun, X.-L.; Jurcik, B. Enhanced treatment of practical textile wastewater by microbubble ozonation. Process Saf. Environ. Prot. 2008, 86, 389–393, doi:10.1016/j.psep.2008.02.005.
[4]  Xu, Q.; Nakajima, M.; Ichikawa, S.; Nakamura, N.; Shiina, T. A comparative study of microbubble generation by mechanical agitation and sonication. Innov. Food Sci. Emerg. Technol. 2008, 9, 489–494, doi:10.1016/j.ifset.2008.03.003.
[5]  Li, P.; Takahashi, M.; Chiba, K. Degradation of phenol by the collapse of microbubbles. Chemosphere 2009, 75, 1371–1375, doi:10.1016/j.chemosphere.2009.03.031.
[6]  Li, P.; Takahashi, M.; Chiba, K. Enhanced free-radical generation by shrinking microbubbles using a copper catalyst. Chemosphere 2009, 77, 1157–1160, doi:10.1016/j.chemosphere.2009.07.062.
[7]  Takahashi, M. Base and technological application of micro-bubble and nano-bubble. Mater. Integr. 2009, 22, 2–19.
[8]  Agarwal, A.; Ng, W.J.; Liu, Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 2011, 84, 1175–1180, doi:10.1016/j.chemosphere.2011.05.054.
[9]  Zimmerman, W.B.; Tesa?, V.; Bandulasena, H. Towards energy efficient nanobubble generation with fluidic oscillation. Curr. Opin. Colloid Interface Sci. 2011, 16, 350–356, doi:10.1016/j.cocis.2011.01.010.
[10]  Li, H.; Hu, L.; Xia, Z. Impact of groundwater salinity on bioremediation enhanced by micro-nano bubbles. Materials 2013, 6, 3676–3687, doi:10.3390/ma6093676.
[11]  Hu, L.; Meegoda, J.N.; Du, J.; Gao, S.; Wu, X. Centrifugal study of zone of influence during air-sparging. J. Environ. Monit. 2011, 13, 2443–2449, doi:10.1039/c0em00594k.
[12]  Li, H.; Hu, L.; Wang, J.; Wu, X.; Liu, P. 3D numerical simulation of air sparging remediation process. Chin. J. Environ. Sci. 2012, 33, 1532–1539.
[13]  Hu, L.; Wu, X.; Liu, Y.; Meegoda, J.N.; Gao, S. Physical modeling of air flow during air sparging remediation. Environ. Sci. Technol. 2010, 44, 3883–3888, doi:10.1021/es903853v.
[14]  Meegoda, J.N.; Hu, L. A review of centrifugal testing of gasoline contamination and remediation. Int. J. Environ. Res. Public Health 2011, 8, 3496–3513, doi:10.3390/ijerph8083496.
[15]  Turner, W. Microbubble persistence in fresh water. J. Acoust. Soc. Am. 1961, 33, 1223–1233, doi:10.1121/1.1908960.
[16]  Yoshida, A.; Takahashi, O.; Ishii, Y.; Sekimoto, Y.; Kurata, Y. Water purification using the adsorption characteristics of microbubbles. Jpn. J. Appl. Phys. 2008, 47, doi:10.1143/JJAP.47.6574.
[17]  Tasaki, T.; Wada, T.; Baba, Y.; Kukizaki, M. Degradation of surfactants by an integrated nanobubbles/VUV irradiation technique. Ind. Eng. Chem. Res. 2009, 48, 4237–4244, doi:10.1021/ie801279b.
[18]  Ohnari, H.; Saga, T.; Watanabe, K.; Maeda, K.; Matsuo, K. High functional characteristics of micro-bubbles and water purification. Res. Process. 1999, 46, 238–244, doi:10.4144/rpsj1986.46.238.
[19]  Couto, H.J.B.; Nunes, D.G.; Neumann, R.; Franca, S.C.A. Micro-bubble size distribution measurements by laser diffraction technique. Miner. Eng. 2009, 22, 330–335, doi:10.1016/j.mineng.2008.09.006.
[20]  Keitel, G.; Onken, U. Inhibition of bubble coalescence by solutes in air/water dispersions. Chem. Eng. Sci. 1982, 37, 1635–1638, doi:10.1016/0009-2509(82)80033-X.
[21]  Malard, F.; Hervant, F. Oxygen supply and the adaptations of animals in groundwater. Freshw. Biol. 1999, 41, 1–30, doi:10.1046/j.1365-2427.1999.00379.x.
[22]  Bowley, W.W.; Hammond, G.L. Controlling factors for oxygen transfer through bubbles. Ind. Eng. Chem. Process Des. Dev. 1978, 17, 2–8, doi:10.1021/i260065a002.
[23]  Bredwell, M.D.; Worden, R.M. Mass transfer properties of microbubbles. 1. Experimental studies. Biotechnol. Prog. 1998, 14, 31–38, doi:10.1021/bp970133x.
[24]  Wan, J.; Veerapaneni, S.; Gadelle, F.; Tokunaga, T.K. Generation of stable microbubbles and their transport through porous media. Water Resour. Res. 2001, 37, 1173–1182, doi:10.1029/2000WR900331.
[25]  Terasaka, K.; Hirabayashi, A.; Nishino, T.; Fujioka, S.; Kobayashi, D. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem. Eng. Sci. 2011, 66, 3172–3179, doi:10.1016/j.ces.2011.02.043.
[26]  Kukizaki, M.; Goto, M. Size control of nanobubbles generated from shirasu-porous-glass (SPG) membranes. J. Membr. Sci. 2006, 281, 386–396, doi:10.1016/j.memsci.2006.04.007.
[27]  Tasaki, T.; Wada, T.; Fujimoto, K.; Kai, S.; Ohe, K.; Oshima, T.; Baba, Y.; Kukizaki, M. Degradation of methyl orange using short-wavelength UV irradiation with oxygen microbubbles. J. Hazard. Mater. 2009, 162, 1103–1110, doi:10.1016/j.jhazmat.2008.05.162.
[28]  Takahashi, M.; Chiba, K.; Li, P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J. Phys. Chem. B 2007, 111, 1343–1347, doi:10.1021/jp0669254.
[29]  Young, T. An essay on the cohesion of fluids. Philos. Trans. Royal Soc. London 1805, 95, 65–87, doi:10.1098/rstl.1805.0005.
[30]  Comte de Laplace, P.S. Traité De Mécanique céleste; Crapelet: Paris, France, 1825.
[31]  Skorokhod, V.; Get’man, O.; Zuev, A.; Rakitin, S. Correlation between the particle size, pore size, and porous structure of sintered tungsten. Sov. Powder Metall. Met. Ceram. 1988, 27, 941–947.
[32]  Fick, A. Ueber diffusion. Annalen der Physik 1855, 170, 59–86, doi:10.1002/andp.18551700105.
[33]  Henry, W. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Philos. Trans. Royal Soc. London 1803, 93, 29–276, doi:10.1098/rstl.1803.0004.
[34]  Duncan, P.B.; Needham, D. Test of the epstein-plesset model for gas microparticle dissolution in aqueous media: Effect of surface tension and gas undersaturation in solution. Langmuir 2004, 20, 2567–2578, doi:10.1021/la034930i.
[35]  Clapeyron, E. Mémoire sur la puissance motrice de la chaleur; Jacques Gabay: Paris, France, 1834.
[36]  Haynes, W.M.; Lide, D.R.; Bruno, T.J. CRC Handbook of Chemistry and Physics 2012–2013; CRC Press: Boca Raton, FL, USA, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413