全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genetic Optimization for Associative Semantic Ranking Models of Satellite Images by Land Cover

DOI: 10.3390/ijgi2020531

Keywords: content-based image ranking, data mining, ranking, genetic, satellite images,?associative

Full-Text   Cite this paper   Add to My Lib

Abstract:

Associative methods for content-based image ranking by semantics are attractive due to the similarity of generated models to human models of understanding. Although they tend to return results that are better understood by image analysts, the induction of these models is difficult to build due to factors that affect training complexity, such as coexistence of visual patterns in same images, over-fitting or under-fitting and semantic representation differences among image analysts. This article proposes a methodology to reduce the complexity of ranking satellite images for associative methods. Our approach employs genetic operations to provide faster and more accurate models for ranking by semantic using low level features. The added accuracy is provided by a reduction in the likelihood to reach local minima or to overfit. The experiments show that, using genetic optimization, associative methods perform better or at similar levels as state-of-the-art ensemble methods for ranking. The mean average precision (MAP) of ranking by semantic was improved by 14% over similar associative methods that use other optimization techniques while maintaining smaller size for each semantic model.

References

[1]  Datcu, M.; Seidel, K. Human-centered concepts for exploration and understanding of earth observation images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 601–609, doi:10.1109/TGRS.2005.843253.
[2]  Tseng, M.-H.; Chen, S.-J.; Hwang, G.-H.; Shen, M.-Y. A genetic algorithm rule-based approach for land-cover classification. ISPRS J. Photogramm. 2008, 63, 202–212, doi:10.1016/j.isprsjprs.2007.09.001.
[3]  Mennis, J.; Guo, D. Spatial data mining and geographic knowledge discovery—An introduction. Comput. Environ. Urban Syst. 2009, 33, 403–408, doi:10.1016/j.compenvurbsys.2009.11.001.
[4]  Datcu, M.; Seidel, K. Image Information Mining: Exploration of Image Content in Large Archives. In Proceedings of 2000 IEEE Aerospace Conference, Big Sky, MT, USA, 18–25 March 2000; Volume 3, pp. 253–264.
[5]  Hsu, W.; Lee, M.L.; Zhang, J. Image mining: Trends and developments. J. Intell. Inf. Syst. 2002, 19, 7–23, doi:10.1023/A:1015508302797.
[6]  Liu, Y.; Zhang, D.; Lu, G.; Ma, W.-Y. A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 2007, 40, 262–282.
[7]  Aksoy, S.; Cinbis, R. Image mining using directional spatial constraints. IEEE Geosci. Remote Sens. Lett. 2010, 7, 33–37, doi:10.1109/LGRS.2009.2014083.
[8]  Barb, A.; Shyu, C.-R. Visual-semantic modeling in content-based geospatial information retrieval using associative mining techniques. IEEE Geosci. Remote Sens. Lett. 2010, 7, 38–42, doi:10.1109/LGRS.2009.2017214.
[9]  Blanchart, P.; Datcu, M. A semi-supervised algorithm for auto-annotation and unknown structures discovery in satellite image databases. IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 2010, 3, 698–717, doi:10.1109/JSTARS.2010.2058794.
[10]  Bratasanu, D.; Nedelcu, I.; Datcu, M. Bridging the semantic gap for satellite image annotation and automatic mapping applications. IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 2011, 4, 193–204, doi:10.1109/JSTARS.2010.2081349.
[11]  Durbha, S.; King, R. Semantics-enabled framework for knowledge discovery from earth observation data archives. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2563–2572, doi:10.1109/TGRS.2005.847908.
[12]  Klaric, M.; Scott, G.; Shyu, C.-R. Multi-index multi-object content-based retrieval. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4036–4049, doi:10.1109/TGRS.2012.2187353.
[13]  Lienou, M.; Maitre, H.; Datcu, M. Semantic annotation of satellite images using latent dirichlet allocation. IEEE Geosci. Remote Sens. Lett. 2010, 7, 28–32, doi:10.1109/LGRS.2009.2023536.
[14]  Molinier, M.; Laaksonen, J.; Hame, T. Detecting man-made structures and changes in satellite imagery with a content-based information retrieval system built on self-organizing maps. IEEE Trans. Geosci. Remote Sens. 2007, 45, 861–874, doi:10.1109/TGRS.2006.890580.
[15]  Scott, G.; Klaric, M.; Davis, C.; Shyu, C.-R. Entropy-balanced bitmap tree for shape-based object retrieval from large-scale satellite imagery databases. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1603–1616, doi:10.1109/TGRS.2010.2088404.
[16]  Shyu, C.-R.; Klaric, M.; Scott, G.J.; Barb, A.S.; Davis, C.H.; Palaniappan, K. GeoIRIS: Geospatial information retrieval and indexing system—Content mining, semantics modeling, and complex queries. IEEE Trans. Geosci. Remote Sens. 2007, 45, 839–852, doi:10.1109/TGRS.2006.890579.
[17]  Sjahputera, O.; Scott, G.; Claywell, B.; Klaric, M.; Hudson, N.; Keller, J.; Davis, C. Clustering of detected changes in high-resolution satellite imagery using a stabilized competitive agglomeration algorithm. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4687–4703, doi:10.1109/TGRS.2011.2152847.
[18]  Li, W.; Raskin, R.; Goodchild, M. Semantic similarity measurement based on knowledge mining: An artificial neural net approach. Int. J. Geogr. Inf. Sci. 2012, 26, 1415–1435, doi:10.1080/13658816.2011.635595.
[19]  Agrawal, R.; Imielinski, T.; Swami, A. Mining Association Rules between Sets of Items in Large Databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (SIGMOD ’93), Washington, DC, USA, 26–28 May 1993; pp. 207–216.
[20]  Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules in Large Databases. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB ’94), San Francisco, CA, USA, 12–15 September 1994; pp. 487–499.
[21]  Ladner, R.; Petry, F.E.; Cobb, M.A. Fuzzy set approaches to spatial data mining of association rules. Trans. GIS 2003, 7, 123–138.
[22]  Huang, Y.; Chang, T.; Kao, L. Using fuzzy SOM strategy for satellite image retrieval and information mining. J. Syst. Cybern. Inf. 2008, 6, 56–61.
[23]  Thabtah, F. A review of associative classification mining. Knowl. Eng. Rev. 2007, 22, 37–65, doi:10.1017/S0269888907001026.
[24]  Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, Ser; Springer: New York, NY, USA, 2009.
[25]  Blum, A.L.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997, 97, 245–271, doi:10.1016/S0004-3702(97)00063-5.
[26]  Li, W.; Han, J.; Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules. In Proceeding of the IEEE International Conference on Data Mining (ICDM 2001), San Jose, CA, USA, 29 November–2 December 2001; pp. 369–376.
[27]  Quinlan, J. Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 1996, 4, 77–90.
[28]  Pudil, P.; Novovicová, J.; Kittler, J. Floating search methods in feature selection. Pattern Recogn. Lett. 1994, 15, 1119–1125, doi:10.1016/0167-8655(94)90127-9.
[29]  Ribeiro, M.X.; Bugatti, P.H.; Traina, C., Jr.; Marques, P.M.A.; Rosa, N.A.; Traina, A.J.M. Supporting content-based image retrieval and computer-aided diagnosis systems with association rule-based techniques. Data Knowl. Eng. 2009, 68, 1370–1382, doi:10.1016/j.datak.2009.07.002.
[30]  Freitas, A. A Review of Evolutionary Algorithms for Data Mining. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer: New York, NY, USA, 2010; pp. 371–400.
[31]  Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed.; Addison-Wesley Longman Publishing Co.,Inc.: Boston, MA, USA, 1989.
[32]  Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; The MIT Press: Cambridge, MA, USA, 1992.
[33]  Momm, H.; Easson, G.; Kuszmaul, J. Evaluation of the use of spectral and textural information by an evolutionary algorithm for multi-spectral imagery classification. Comput. Environ. Urban Syst. 2009, 33, 463–471, doi:10.1016/j.compenvurbsys.2009.07.007.
[34]  Shad, R.; Mesgari, M.S.; Abkar, A.; Shad, A. Predicting air pollution using fuzzy genetic linear membership kriging in GIS. Comput. Environ. Urban Syst. 2009, 33, 472–481.
[35]  Zhang, X.; Wang, J.; Wu, F.; Fan, Z.; Li, X. A Novel Spatial Clustering with Obstacles Constraints Based on Genetic Algorithms and k-Medoids. In Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA ’06), Washington, DC, USA, 16–18 October 2006; Volume 1, pp. 605–610.
[36]  Gao, L.; Dai, S.; Zheng, S.; Yan, G. Using Genetic Algorithm for Data Mining Optimization in an Image Database. In Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), Haikou, Hainan, China, 24–27 August 2007; Volume 3, pp. 721–723.
[37]  Bandyopadhyay, S.; Maulik, U.; Mukhopadhyay, A. Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1506–1511, doi:10.1109/TGRS.2007.892604.
[38]  De Stefano, C.; Fontanella, F.; Marrocco, C. A GA-Based Feature Selection Algorithm for Remote Sensing Images. In Proceedings of the 2008 Conference on Applications of Evolutionary Computing (Evo’08), Naples, Italy, 26 March 2008; Springer-Verlag: Berlin/Heidelberg, Germany; pp. 285–294.
[39]  Da Silva, S.F.; Ribeiro, M.X.; Batista Neto, J.A.D.E.S.; Traina, C., Jr.; Traina, A.J.M. Improving the ranking quality of medical image retrieval using a genetic feature selection method. Decis. Support Syst. 2011, 51, 810–820, doi:10.1016/j.dss.2011.01.015.
[40]  Mahrooghy, M.; Younan, N.; Anantharaj, V.; Aanstoos, J.; Yarahmadian, S. On the use of the genetic algorithm filter-based feature selection technique for satellite precipitation estimation. IEEE Geosci. Remote Sens. Lett. 2012, 9, 963–967, doi:10.1109/LGRS.2012.2187513.
[41]  Barb, A.S.; Barb, C.S. Genetic Methods for Associative Semantic Ranking of Landsat Image Regions by Land Cover. In Proceedings of Image Information Mining Workshop, Oberpfaffenhofen, Germany, 24–26 October 2012; European Space Agency and Joint Research Commissions: Oberpfaffenhofen, Germany; pp. 102–105.
[42]  Syswerda, G. A Study of Reproduction in Generational and Steady-State Genetic Algorithms. In Proceeding of the First Workshop on Foundations of Genetic Algorithms, Bloomington Campus, IN, USA, 15–18 July 1990; pp. 94–101.
[43]  Vavak, F.; Fogarty, T. Comparison of Steady State and Generational Genetic Algorithms for Use in Nonstationary Environments. In Proceedings of IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 192–195.
[44]  Davis, L. Handbook of Genetic Algorithms; Van Nostrand Reinhold: New York, NY, USA, 1991.
[45]  Chauvet, G.; Tillé, Y. A fast algorithm for balanced sampling. Comput. Stat. 2006, 21, 53–62, doi:10.1007/s00180-006-0250-2.
[46]  The Wisconsin Regional Orthophotography Consortium (WROC). 2012. Available online: http://www.ncwrpc.org/WROC/ (accessed on 1 August 2012).
[47]  Asuncion, A.; Newman, D.J. UCI Machine Learning Repository. 2007. Available online: http://www.ics.uci.edu/~mlearn/MLRepository.html (accessed on 1 March 2012).
[48]  Sober, E. What is the Problem of Simplicity?; Zellner, A., Keuzenkamp, H., McAleer, M., Eds.; Cambridge University Press: Cambridge, UK, 2002.
[49]  Bishop, C. Neural Networks for Pattern Recognition, 1st ed.; Oxford University Press: New York, NY, USA, 1996.
[50]  Freund, Y.; Schapire, R. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139, doi:10.1006/jcss.1997.1504.
[51]  Landwehr, N.; Hall, M.; Frank, E. Logistic model trees. Mach. Learn. 2005, 59, 161–205, doi:10.1007/s10994-005-0466-3.
[52]  Clemencon, S.; Vayatis, N. Tree-based ranking methods. IEEE Trans. Inf. Theory 2009, 55, 4316–4336, doi:10.1109/TIT.2009.2025558.
[53]  R Development Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing; Vienna, Austria, 2011. 2011. Available online: http://www.R-project.org (accessed on 1 November 2012).
[54]  Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133