全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bone-Targeted Agents for the Management of Breast Cancer Patients with Bone Metastases

DOI: 10.3390/jcm2030067

Keywords: bone metastases, bone-targeted therapy, skeletal-related events, bisphosphonates, denosumab

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite advances in adjuvant therapy for breast cancer, bone remains the most common site of recurrence. The goal of therapy for these patients is palliative and focused on maximizing the duration and quality of their life, while concurrently minimizing any disease or treatment-related complications. Bone metastases predispose patients to reduced survival, pain, impaired quality of life and the development of skeletal-related events. With an increased understanding of the pathophysiology of bone metastasis, effective treatments for their management have evolved and are now in widespread clinical use. This article will discuss the pathogenesis of bone metastases and review the key clinical evidence for the efficacy and safety of currently available systemic bone-targeted therapies in breast cancer patients with an emphasis on bisphosphonates and the receptor activator of nuclear factor kappa B ligand (RANKL) inhibitors. We will also discuss novel strategies and therapies currently in development.

References

[1]  Abraham, H.L.; Spiro, R.; Goldstein, N. Metastases in carcinoma. Analysis of 1000 autopsied cases. Cancer 1950, 23, 74–85.
[2]  Coleman, R.E.; Rubens, R.D. The clinical course of bone metastases from breast cancer. Br. J. Cancer 1987, 55, 61–66, doi:10.1038/bjc.1987.13.
[3]  Bouganim, N.; Tsvetkova, E.; Clemons, M.; Amir, E. Evolution of sites of recurrence after early breast cancer over the last 20 years: Implications for patient care and future research. Breast Cancer Res. Treat. 2013, 139, 603–606, doi:10.1007/s10549-013-2561-7.
[4]  Coleman, R.E. Skeletal complications of malignancy. Cancer 1997, 80, 1588–1594, doi:10.1002/(SICI)1097-0142(19971015)80:8+<1588::AID-CNCR9>3.0.CO;2-G.
[5]  Mundy, G.R. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2002, 9, 285–293.
[6]  Lipton, A. Bisphosphonates and metastatic breast carcinoma. Cancer 2003, 97, 848–853, doi:10.1002/cncr.11123.
[7]  Rosen, L.S. New generation of bisphosphonates: Broad clinical utility in breast and prostate cancer. Oncology (Williston Park) 2004, 18, 26–32.
[8]  Hortobagyi, G.N.; Theriault, R.L.; Porter, L.; Blayney, D.; Lipton, A.; Sinoff, C.; Wheeler, H.; Simeone, J.F.; Seaman, J.; Knight, R.D.; et al. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N. Engl. J. Med. 1996, 335, 1785–1791, doi:10.1056/NEJM199612123352401.
[9]  Lipton, A. Future treatment of bone metastases. Clin. Cancer Res. 2006, 12, 6305–6308, doi:10.1158/1078-0432.CCR-06-1157.
[10]  Bouganim, N.; Dranitsaris, G.; Amir, E.; Clemons, M. Optimizing the use of bone-targeted agents in patients with metastatic cancers: A practical guide for medical oncologists. Support. Care Cancer 2011, 19, 1687–1696, doi:10.1007/s00520-011-1230-9.
[11]  Jensen, A.O.; Jacobsen, J.B.; Norgaard, M.; Yong, M.; Fryzek, J.P.; S?rensen, H.T. Incidence of bone metastases and skeletal-related events in breast cancer patients: A population-based cohort study in Denmark. BMC Cancer 2011, 11, doi:10.1186/1471-2407-11-29.
[12]  Rose, A.A.; Siegel, P.M. Emerging therapeutic targets in breast cancer bone metastases. Future Oncol. 2010, 6, 55–74, doi:10.2217/fon.09.138.
[13]  Lee, B.L.; Higgins, M.J.; Goss, P.E. Denosumab and the current status of bone-modifying drugs in breast cancer. Acta Oncol. 2012, 51, 157–167, doi:10.3109/0284186X.2011.633555.
[14]  Barginear, M.F.; van Poznak, C.H. Treatment of bone metastases in breast cancer: An update. Curr. Breast Cancer Rep. 2012, 4, 257–263, doi:10.1007/s12609-012-0089-1.
[15]  Wong, M.H.F.; Stockler, M.R.; Pavlakis, N. Bisphosphonates and other bone agents for breast cancer (review). Cochrane Database Syst. Rev. 2012, 2, doi:10.1002/14651858.CD003474.pub3.
[16]  Lipton, A.; Fizazi, K.; Stopeck, A.T.; Henry, D.H.; Brown, J.E.; Yardley, D.A.; Richardson, G.E.; Siena, S.; Maroto, P.; Clemens, M.; et al. Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: A combined analysis of 3 pivotal, randomised, phase 3 trials. Eur. J. Cancer 2012, 48, 3082–3092, doi:10.1016/j.ejca.2012.08.002.
[17]  Clezardin, P. Therapeutic targets for bone metastases in breast cancer. Breast Cancer Res. 2011, 13, doi:10.1186/bcr2835.
[18]  Clemons, M.; Russell, K.; Costa, L.; Addison, C.L. Adjuvant bisphosphonate treatment for breast cancer: Why did something so elegant become so complicated? Breast Cancer Res. Treat. 2012, 134, 453–457, doi:10.1007/s10549-012-2077-6.
[19]  Russell, K.; Clemons, M.; Costa, L.; Addison, C.L. Adjuvant bisphosphonate treatment for breast cancer: Where are we heading and can the pre-clinical literature help us get there? J. Bone Oncol. 2012, 1, 12–17, doi:10.1016/j.jbo.2012.04.003.
[20]  Clezardin, P.; Teti, A. Bone metastases: Pathogenesis and therapeutic implications. Clin. Exp. Metastasis 2007, 24, 599–608, doi:10.1007/s10585-007-9112-8.
[21]  Sethi, N.; Dai, X.; Winter, C.G.; Kang, Y. Tumor-derived jagged I promotes osteolytic bone metastasis of breast cancer by engaging notch signalling in bone cells. Cancer Cell 2011, 19, 192–205, doi:10.1016/j.ccr.2010.12.022.
[22]  Roodman, G.D. Mechanisms of bone metastases. N. Engl. J. Med. 2004, 350, 1655–1664, doi:10.1056/NEJMra030831.
[23]  Russell, R.G.; Watts, N.B.; Ebetino, F.H.; Rogers, M.J. Mechanism of action bisphosphonates: Similarities and differences and their potential influence on clinical activity. Osteoporos. Int. 2008, 19, 733–759, doi:10.1007/s00198-007-0540-8.
[24]  Kavanagh, K.L.; Guo, K.; Dunford, J.E.; Wu, X.; Knapp, S.; Ebetino, F.H.; Rogers, M.J.; Russell, R.G.; Oppermann, U. The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc. Natl. Acad. Sci. USA 2006, 103, 7829–7834, doi:10.1073/pnas.0601643103.
[25]  Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast differentiation and activation. Nature 2003, 423, 337–342, doi:10.1038/nature01658.
[26]  Leibbrandt, A.; Penninger, J.M. RANK/RANKL: Regulators of immune responses and bone physiology. Ann. N. Y. Acad. Sci. 2008, 1143, 123–150, doi:10.1196/annals.1443.016.
[27]  Elomaa, I.; Blomqvist, C.; Grohn, P.; Porkka, L.; Kairento, A.L.; Selander, K.; Lamberg-Allardt, C.; Holmstrom, T. Long-term controlled trial with diphosphonate in patients with osteolytic bone metastases. Lancet 1983, 1, 146–149.
[28]  Martoni, A.; Guaraldi, M.; Camera, P.; Biagi, R.; Marri, S.; Beghe, F.; Pannuti, F. Controlled clinical study on the use of dicholomethylene diphosphonate in patients with breast carcinoma metastasizing to the skeleton. Oncology 1991, 48, 97–101, doi:10.1159/000226904.
[29]  Patterson, A.H.G.; Powles, T.J.; Kanis, E.; McCloskey, J.; Hanson, J.; Ashley, S. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J. Clin. Oncol. 1993, 11, 59–65.
[30]  Kristensen, B.; Ejlertsen, B.; Groenvold, M.; Hein, S.; Loft, H.; Mouridsen, H.T. Oral clodronate in breast cancer patients with bone metastases: A randomized study. J. Int. Med. 1999, 246, 67–74, doi:10.1046/j.1365-2796.1999.00507.x.
[31]  Tubiana-Hulin, M.; Beuzeboc, P.; Mauriac, L.; Barbet, N.; Frenay, M.; Monnier, A.; Pion, J.M.; witsers, O.; Misset, J.L.; Assadourian, S.; et al. Double-blinded controlled study comparing clodronate versus placebo in patients with breast cancer bone metastases. Bull. Cancer 2001, 88, 701–707.
[32]  Conte, P.F.; Latreille, J.; Mauriac, F.; Calabresu, R.; Santos, D.; Campos, L.; Bonneterre, J.; Francini, G.; Ford, J.M. Delay in progression of bone metastases in breast cancer patients treated with intravenous pamidronate: Results from a multinational randomized controlled trial. J. Clin. Oncol. 1996, 14, 2552–2559.
[33]  Hortobagyi, G.N.; Theriault, R.L.; Lipton, A.; Porter, L.; Blayney, D.; Sinoff, C.; Wheeler, H.; Simeone, J.F.; Seaman, J.J.; Knight, R.D.; et al. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. J. Clin. Oncol. 1998, 16, 2038–2044.
[34]  Hultborn, R.; Gundersen, S.; Ryden, S.; Holmberg, E.; Cartensen, J.; Wallgren, U.B.; Killany, S.; Andreassen, L.; Carlsson, G.; Fahl, N.; et al. Efficacy of pamidronate in breast cancer with bone metastases: A randomized, double-blind placebo-controlled multicentre study. Anticancer Res. 1999, 19, 3383–3392.
[35]  Theriault, R.L.; Lipton, A.; Hortobagyi, G.N.; Leff, R.; Gluck, S.; Stewart, J.F.; Costello, S.; Kennedy, I.; Simeone, J.; Seaman, J.J.; et al. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: A randomized, placebo-controlled trial. J. Clin. Oncol. 1999, 17, 846–854.
[36]  Lipton, A.; Theriault, R.L.; Hortobagyi, G.N.; Simeone, J.; Knight, R.D.; Mellars, K.; Reitsma, D.J.; Heffernan, M.; Seaman, J.J. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases. Long term follow-up of two randomized, placebo-controlled trials. Cancer 2000, 88, 1082–1090, doi:10.1002/(SICI)1097-0142(20000301)88:5<1082::AID-CNCR20>3.0.CO;2-Z.
[37]  Nussbaum, S.R.; Younger, J.; Vandepol, C.J.; Gagel, R.F.; Zubler, M.A.; Chapman, R.; Henderson, I.C.; Mallette, L.E. Single-dose intravenous therapy with pamidronate for the treatment of hypercalcemia of malignancy: Comparison of 30-, 60-, and 90-mg dosages. Am. J. Med. 1993, 95, 297–304, doi:10.1016/0002-9343(93)90282-T.
[38]  Body, J.J.; Dumon, J.C. Treatment of tumour-induced hypercalcaemia with the bisphosphonate pamidronate: Dose-response relationship and influence of tumour type. Ann. Oncol. 1994, 5, 359–363.
[39]  Body, J.J.; Diel, I.J.; Lichinitser, M.R.; Kreuser, E.D.; Dornoff, W.; Gorbunova, V.A.; Budde, M.; Bergstr?m, B. Intravenous ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone metastases. Ann. Oncol. 2003, 14, 1399–1405, doi:10.1093/annonc/mdg367.
[40]  Body, J.J.; Diel, I.J.; Lichinitzer, M.; Lazarev, A.; Pecherstorfer, M.; Bell, R.; Tripathy, D.; Bergstrom, B. Oral ibandronate reduces the risk of skeletal complications in breast cancer patients with metastatic bone disease: Results from two randomised, placebo-controlled phase III studies. Br. J. Cancer 2004, 90, 1133–1137, doi:10.1038/sj.bjc.6601663.
[41]  Heras, P.; Kritikos, K.; Hatzopoulos, A.; Georgopoulou, A.P. Efficacy of ibandronate for the treatment of skeletal events in patients with metastatic breast cancer. Eur. J. Cancer Care 2009, 18, 653–656, doi:10.1111/j.1365-2354.2008.00980.x.
[42]  Kohno, N.; Aogi, K.; Minami, H.; Nakamura, S.; Asaga, T.; Iino, Y.; Watanabe, T.; Goessl, C.; Ohashi, Y.; Takashima, S. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: A randomized, placebo-controlled trial. J. Clin. Oncol. 2005, 23, 3314–3321, doi:10.1200/JCO.2005.05.116.
[43]  Rosen, L.S.; Gordon, D.H.; Dugan, W., Jr.; Major, P.; Eisenberg, P.D.; Provencher, L.; Kaminski, M.; Simeone, J.; Seaman, J.; Chen, B.L.; et al. Zoledronic acid is superior to pamidronate for the treatment of bone metastases in breast carcinoma patients with at least one osteolytic lesion. Cancer 2004, 100, 36–43, doi:10.1002/cncr.11892.
[44]  Barrett-Lee, P.J.; Casbard, A.; Abraham, J.; Grieve, R.; Wheatley, D.; Simmons, P.; Coleman, R.; Hood, K.; Griffiths, G.; Murray, N. Zoledronate versus ibandronate comparative evaluation (ZICE) trial—First results of a UK NCRI 1405 patient phase III trial comparing oral ibandronate versus intravenous zoledronate in the treatment of breast cancer patients with bone metastases. Cancer Res. 2012, 72, doi:10.1158/0008-5472.SABCS12-PD07-09.
[45]  Rosen, L.S.; Gordon, D.; Kaminski, M.; Howell, A.; Belch, A.; Mackey, J.; Apffelstaedt, J.; Hussein, M.A.; Coleman, R.E.; Reitsma, D.J.; et al. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: A randomized, double-blind, multicenter, comparative trial. Cancer 2003, 98, 1735–1744, doi:10.1002/cncr.11701.
[46]  Fizazi, K.; Lipton, A.; Mariette, X.; Body, J.J.; Rahim, Y.; Gralow, J.R.; Gao, G.; Wu, L.; Sohn, W.; Jun, S. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J. Clin. Oncol. 2009, 27, 1564–1571, doi:10.1200/JCO.2008.19.2146.
[47]  Lipton, A.; Steger, G.G.; Figueroa, J.; Alvarado, C.; Solal-Celigny, P.; Body, J.J.; de Boer, R.; Berardi, R.; Gascon, P.; Tonkin, K.S.; et al. Extended efficacy and safety of denosumab in breast cancer patients with bone metastases not receiving prior bisphosphonate therapy. Clin. Cancer Res. 2008, 14, 6690–6696, doi:10.1158/1078-0432.CCR-07-5234.
[48]  Stopeck, A.T.; Lipton, A.; Body, J.J.; Steger, G.G.; Tonkin, K.; de Boer, R.H.; Lichinitser, M.; Fujiwara, Y.; Yardley, D.A.; Viniegra, M.; et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: A randomized, double-blind study. J. Clin. Oncol. 2010, 28, 5132–5139, doi:10.1200/JCO.2010.29.7101.
[49]  Clemons, M.; Gelmon, K.A.; Pritchard, K.I.; Paterson, A.H. Bone-targeted agents and skeletal-related events in breast cancer patients with bone metastases: The state of the art. Curr. Oncol. 2012, 19, 259–268.
[50]  Van Poznak, C.H.; Temin, S.; Yee, G.C.; Janjan, N.A.; Barlow, W.E.; Biermann, J.S.; Bosserman, L.D.; Geoghegan, C.; Hillner, B.E.; Theriault, R.L.; et al. American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modifying agents in metastatic breast cancer. J. Clin. Oncol. 2011, 29, 1221–1227, doi:10.1200/JCO.2010.32.5209.
[51]  Olson, K.; van Poznak, C. Significance and impact of bisphosphonate-induced acute phase responses. J. Oncol. Pharm. Pract. 2007, 13, 223–229, doi:10.1177/1078155207080806.
[52]  Ruggiero, S.L.; Dodson, T.B.; Assael, L.A.; Landesberg, R.; Marx, R.E.; Mehrotra, B. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws—2009 update. J. Oral Maxillofac. Surg. 2009, 67, 2–12.
[53]  Kuchuk, I.; Mazzarello, S.; Butterfield, K.; Appleton, A.; Addison, C.L.; Clemons, M. Oral care and the use of bone-targeted agents in patients with metastatic cancers: A practical guide for dental surgeons and oncologists. J. Bone Oncol. 2013, 2, 38–46, doi:10.1016/j.jbo.2012.12.001.
[54]  Lipton, A. Implications of bone metastases and the benefits of bone-targeted therapy. Semin. Oncol. 2010, 37, S15–S29, doi:10.1053/j.seminoncol.2010.10.002.
[55]  Suva, L.J.; Brander, B.E.; Makhoul, I. Update on bone-modifying agents in metastatic breast cancer. Nat. Rev. Endocrinol. 2011, 7, 380–381, doi:10.1038/nrendo.2011.80.
[56]  Simmons, C.; Amir, E.; Dranitsaris, G.; Clemons, M.; Wong, B.; Veith, R.; Cole, D.E. Altered calcium metabolism in patients on long-term bisphosphonate therapy for metastatic breast cancer. Anticancer Res. 2009, 29, 2707–2711.
[57]  Gebara, S.N.; Moubayed, H. Risk of osteonecrosis of the jaw in cancer patients taking bisphosphonates. Am. J. Health Syst. Pharm. 2009, 66, 1541–1547, doi:10.2146/ajhp080251.
[58]  Ripamonti, C.I.; Maniezzo, M.; Campa, T.; Fagnoni, E.; Brunelli, C.; Saibene, G.; Bareggi, C.; Ascani, L.; Cislaghi, E. Decreased occurrence of osteonecrosis of the jaw after implementation of dental preventive measures in solid tumour patients with bone metastases treated with bisphosphonates. The experience of the National Cancer Institute of Milan. Ann. Oncol. 2009, 20, 137–145.
[59]  Fralick, M.; Bouganim, N.; Kremer, R.; Robertson, S.; Vandermeet, L.; Kuchuk, I.; Li, J.; Murshed, M.; Clemons, M. Histomorphometric and microarchitectural analyses using the 2mm bone marrow trephine in metastatic breast cancer patients—Preliminary results. J. Bone Oncol. 2012, 1, 69–73, doi:10.1016/j.jbo.2012.10.003.
[60]  Saad, F.; Brown, J.E.; van Poznak, C.; Ibrahim, T.; Stemmer, S.M.; Stopeck, A.T.; Diel, I.J.; Takahashi, S.; Shore, N.; Henry, D.H.; et al. Incidence, risk factors, and outcomes of osteonecrosis of the jaw: Integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann. Oncol. 2012, 23, 1341–1347, doi:10.1093/annonc/mdr435.
[61]  Stopeck, A.T.; Lipton, A.; Martin, M.; Body, J.J.; Paterson, A.; Steger, G.G.; Tonkin, K.; de Boer, R.H.; Fujiwara, Y.; Yardley, D.; et al. Denosumab in patients with breast cancer and bone metastases previously treated with zoledronic acid or denosumab: Results from the 2-year open-label extension treatment phase of a pivotal phase 3 study. Cancer Res. 2011, 71, doi:10.1158/0008-5472.SABCS11-P3-16-07.
[62]  Kuchuk, I.; Clemons, M.; Addison, C. Time to put an end to the “one size fits all” approach to bisphosphonate use in patients with metastatic breast cancer? Curr. Oncol. 2012, 19, e303–e304.
[63]  Mourskaia, A.A.; Amir, E.; Dong, Z.; Tiedemann, K.; Cory, S.; Omeroglu, A.; Bertos, N.; Ouellet, V.; Clemons, M.; Scheffer, G.L.; et al. ABCC5 supports osteoclast formation and promotes breast cancer metastasis to bone. Breast Cancer Res. 2012, 14, doi:10.1186/bcr3361.
[64]  Onishi, T.; Hayashi, N.; Theriault, R.L.; Hortobagyi, G.N.; Ueno, N.T. Future directions of bone-targeted therapy for metastatic breast cancer. Nat. Rev. Clin. Oncol. 2010, 7, 641–651, doi:10.1038/nrclinonc.2010.134.
[65]  Brownlow, N.; Mol, C.; Hayford, C.; Ghaem-Maghami, S.; Dibb, N.J. Dasatinib is a potent inhibitor of tumour-associated macrophages, osteoclasts and the FMS receptor. Leukemia 2009, 23, 590–594, doi:10.1038/leu.2008.237.
[66]  Vandyke, K.; Dewar, A.L.; Farrugia, A.N.; Fitter, S.; Bik-To, L.; Hughes, T.P.; Zannettino, A.C. Therapeutic concentrations of dasatinib inhibit in vitro osteoclastogenesis. Leukemia 2009, 23, 994–997, doi:10.1038/leu.2008.356.
[67]  Zhang, X.H.; Wang, Q.; Gerald, W.; Hudis, C.A.; Norton, L.; Smid, M.; Foekens, J.A.; Massagué, J. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 2009, 16, 67–78, doi:10.1016/j.ccr.2009.05.017.
[68]  Finn, R.S.; Bengala, C.; Ibrahim, N.; Strauss, L.C.; Fairchild, J.; Sy, O.; Roche, H.; Sparano, J.; Goldstein, L.J. Phase II trial of dasatinib in triple-negative breast cancer: Results of study CA180059. Cancer Res. 2009, 69, doi:10.1158/0008-5472.SABCS-3118.
[69]  Mayer, E.; Baurain, J.; Sparano, J.; Strauss, L.; Campone, M.; Fumoleau, P.; Rugo, H.; Awada, A.; Sy, O.; Llombart, A. Dasatinib in advanced HER2/neu amplified and ER/PR-positive breast cancer: Phase II study CA180088. J. Clin. Oncol. 2009, 27, 1011.
[70]  Campone, M.; Bondarenko, I.; Brincat, S.; Hotko, Y.; Munster, P.N.; Chmielowska, E.; Fumoleau, P.; Ward, R.; Bardy-Bouxin, N.; Leip, E.; et al. Phase II study of single-agent bosutinib, a Src/Abl tyrosine kinase inhibitor, in patients with locally advanced or metastatic breast cancer pretreated with chemotherapy. Ann. Oncol. 2012, 23, 610–617, doi:10.1093/annonc/mdr261.
[71]  A Randomized, Double-Blind, Multi-Center Phase II Trial of Exemestane (Aromasin?) Plus Dasatinib versus Exemestane Plus Placebo in Advanced Estrogen Receptor-Positive Breast Cancer after Disease Progression on a Non-Steroidal Aromatase Inhibitor (NSAI). Available online: http://clinicaltrials.gov (accessed on 15 May 2013).
[72]  Randomized Phase II Trial of Letrozole with or without Dasatinib as First and Second-Line Treatment for Hormone Receptor-Positive, HER2-Negative Post-Menopausal Breast Cancer that is Unresectable, Locally Recurrent or Metastatic. Available online: http://clinicaltrials.gov (accessed on 15 May 2013).
[73]  Phase II Randomized Trial of Fulvestrant with or without Dasatinib in Men and Postmenopausal Women Who Have Hormone Receptor-Positive Advanced Breast Cancer Previously Treated with an Aromatase Inhibitor. Available online: http://clinicaltrials.gov (accessed on 15 May 2013).
[74]  Phase I/II Study of Dasatinib in Combination with Zoledronic Acid for the Treatment of Breast Cancer with Bone Metastasis. Available online: http://clinicaltrials.gov (accessed on 15 May 2013).
[75]  Phase II Studies of Two Different Schedules of Dasatinib (NSC-732517) in Bone Metastasis Predominant Metastatic Breast Cancer. Available online: http://clinicaltrials.gov (accessed on 15 May 2013).
[76]  A Phase II, Randomised, Open-Label, Pilot Study to Evaluate the Safety and Effects on Bone Resorption of AZD0530 in Patients with Prostate Cancer or Breast Cancer with Metastatic Bone Disease. Available online: http://clinicaltrials.gov (accessed on 15 May 2013).
[77]  A Phase II Study of AZD0530 in Hormone Receptor-Negative, Metastatic or Unresectable, Locally Advanced Breast Cancer. Available online: http://clinicaltrials.gov (accessed on 15 May 2013).
[78]  Yamashita, D.S.; Dodds, R.A. Cathepsin K and the design of inhibitors of cathepsin K. Curr. Pharm. Des. 2000, 6, 1–24, doi:10.2174/1381612003401569.
[79]  Stroup, G.B.; Lark, M.W.; Veber, D.F.; Bhattacharyya, A.; Blake, S.; Dare, L.C.; Erhard, K.F.; Hoffman, S.J.; James, I.E.; Marquis, R.W.; et al. Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J. Bone Miner. Res. 2001, 16, 1739–1746, doi:10.1359/jbmr.2001.16.10.1739.
[80]  Littlewood-Evans, A.J.; Bilbe, G.; Bowler, W.B.; Farley, D.; Wlodarski, B.; Kokubo, T.; Inaoka, T.; Sloane, J.; Evans, D.B.; Gallagher, J.A. The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma. Cancer Res. 1997, 57, 5386–5390.
[81]  Stoch, S.A.; Zajic, S.; Stone, J.; Miller, D.L.; van Dyck, K.; Gutierrez, M.J.; de Decker, M.; Liu, L.; Liu, Q.; Scott, B.B.; et al. Effect of the cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthy postmenopausal women: Two double-blind, randomized, placebo-controlled phase I studies. Clin. Pharmacol. Ther. 2009, 86, 175–182, doi:10.1038/clpt.2009.60.
[82]  Jensen, A.B.; Wynne, C.; Ramirez, G.; He, W.; Song, Y.; Berd, Y.; Wang, H.; Mehta, A.; Lombardi, A. The cathepsin K inhibitor odanacatib suppresses bone resorption in women with breast cancer and established bone metastases: Results of a 4-week, double-blind, randomized, controlled trial. Clin. Breast Cancer 2010, 10, 452–458.
[83]  Buijs, J.T.; Stayrook, K.R.; Guise, T.A. TGF-β in the bone microenvironment: Role in breast cancer metastases. Cancer Microenviron. 2011, 4, 261–281, doi:10.1007/s12307-011-0075-6.
[84]  Biswas, S.; Nyman, J.S.; Alvarez, J.; Chakrabarti, A.; Ayres, A.; Sterling, J.; Edwards, J.; Rana, T.; Johnson, R.; Perrien, D.S.; et al. Anti-transforming growth factor β antibody treatment rescues bone loss and prevents breast cancer metastasis to bone. PLoS One 2011, 6, e27090, doi:10.1371/journal.pone.0027090.
[85]  Hu, Z.; Gerseny, H.; Zhang, Z.; Chen, Y.J.; Berg, A.; Zhang, Z.; Stock, S.; Seth, P. Oncolytic adenovirus expressing soluble TGFβ receptor II-Fc-mediated inhibition of established bone metastases: A safe and effective systemic therapeutic approach for breast cancer. Mol. Ther. 2011, 19, 1609–1618, doi:10.1038/mt.2011.114.
[86]  Ehata, S.; Hanyu, A.; Fujime, M.; Katsuno, Y.; Fukunaga, E.; Goto, K.; Ishikawa, Y.; Nomura, K.; Yokoo, H.; Shimizu, T.; et al. Ki26894, a novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci. 2007, 98, 127–133, doi:10.1111/j.1349-7006.2006.00357.x.
[87]  Bandyopadhyay, A.; Agyin, J.K.; Wang, L.; Tang, Y.; Lei, X.; Story, B.M.; Cornell, J.E.; Pollock, B.H.; Mundy, G.R.; Sun, L.Z. Inhibition of Pulmonary and Skeletal Metastasis by a Transforming Growth Factor-β Type I Receptor Kinase Inhibitor. Cancer Res. 2006, 66, 6714–6721, doi:10.1158/0008-5472.CAN-05-3565.
[88]  Hirbe, A.C.; Morgan, E.A.; Weilbaecher, K.N. The CXCR4/SDF-1 chemokine axis: A potential therapeutic target for bone metastases? Curr. Pharm. Des. 2010, 16, 1284–1290, doi:10.2174/138161210791034012.
[89]  Richert, M.M.; Vaidya, K.S.; Mills, C.N.; Wong, D.; Korz, W.; Hurst, D.R.; Welch, D.R. Inhibition of CXCR4 by CTCE-9908 inhibits breast cancer metastasis to lung and bone. Oncol. Rep. 2009, 21, 761–767.
[90]  Wong, D.; Korz, W. Translating an antagonist of chemokine receptor CXCR4: From bench to bedside. Clin. Cancer Res. 2008, 14, 7975–7980, doi:10.1158/1078-0432.CCR-07-4846.
[91]  Hotte, S.J.; Hirte, H.W.; Iacobucci, A.; Wong, D.; Korz, W.; Miller, W.H. Final results of a phase I/II study of CTCE-9908, a novel anticancer agent that inhibits CXCR4 in patients with advanced solid cancers. Eur. J. Cancer 2008, 6, 127.
[92]  Kuchuk, I.; Addison, C.; Simos, D.; Clemons, M. A national portfolio of bone oncology trials—The Canadian experience in 2012. J. Bone Oncol. 2012, 1, 95–100, doi:10.1016/j.jbo.2012.09.001.
[93]  Hutton, B.; Addison, C.; Mazzarello, S.; Joy, A.; Bouganim, N.; Fergusson, D.; Clemons, M. De-escalated administration of bone-targeted agents in patients with breast and prostate cancer—A survey of canadian oncologists. J. Bone Oncol. 2013. in press.
[94]  Hutton, B.; Moretto, P.; Emmenegger, U.; Mazzarello, S.; Kuchuk, I.; Addison, C.L.; Crawley, F.; Canil, C.; Malone, S.; Berry, S.; et al. Bone-targeted agent use for bone metastases from breast cancer and prostate cancer: A patient survey. J. Bone Oncol. 2013. in press.
[95]  Amadori, D.; Aglietta, M.; Alessi, B.; Gianni, L.; Ibrahim, T.; Farina, G.; Gaion, F.; Bertoldo, F.; Santini, D.; Rondena, R.; et al. ZOOM: A prospective, randomized trial of zoledronic acid (ZOL; q 4 wk vs. q 12 wk) for long-term treatment in patients with bone-metastatic breast cancer (BC) after 1 year of standard ZOL treatment. J. Clin. Oncol. 2012. Available online: http://meeting.ascopubs.org/cgi/content/abstract/30/15_suppl/9005?sid=aed8de5a-3972-48bd-9870-827b01f719a3 (accessed on 15 May 2013).
[96]  Hutton, B.; Addison, C.L.; Campbell, K.; Fergusson, D.; Mazarello, S.; Clemons, M. A systematic review of de-escalated versus 3–4 weekly treatment with bone targeted agents for patients with bone metastases from breast cancer. J. Bone Oncol. 2013, 2, 77–83, doi:10.1016/j.jbo.2013.03.001.
[97]  The Triumph Study: A Multicentre Study Assessing 12-Weekly Intravenous Bisphosphonate Therapy in Women with Low Risk Bone Metastases from Breast Cancer Using Bone Resorption Markers. Available online: http://www.canadiancancertrials.ca (accessed on 15 May 2013).
[98]  Study of Zoledronic Acid Administered Monthly vs. Every 3 Months in Multiple Myeloma and Breast Cancer Patients Who Were Treated with Zoledronic Acid the Prior Year. Available online: http://clinicaltrials.gov (accessed on 15 May 2013).
[99]  Zoledronic Acid in Treating Patients with Metastatic Breast Cancer, Metastatic Prostate Cancer, or Multiple Myeloma with Bone Involvement. Available online: http://clinicaltrials.gov (accessed on 15 May 2013).
[100]  Clemons, M.J.; Dranitsaris, G.; Ooi, W.S.; Yogendran, G.; Sukovic, T.; Wong, B.Y.; Verma, S.; Pritchard, K.I.; Trudeau, M.; Cole, D.E. Phase II trial evaluating the palliative benefit of second-line zoledronic acid in breast cancer patients with either a skeletal-related event or progressive bone metastases despite first-line bisphosphonate therapy. J. Clin. Oncol. 2006, 24, 4895–4900, doi:10.1200/JCO.2006.05.9212.
[101]  Clemons, M.; Dranitsaris, G.; Ooi, W.; Cole, D.E. A Phase II trial evaluating the palliative benefit of second-line oral ibandronate in breast cancer patients with either a skeletal related event (SRE) or progressive bone metastases (BM) despite standard bisphosphonate (BP) therapy. Breast Cancer Res. Treat. 2008, 108, 79–85, doi:10.1007/s10549-007-9583-y.
[102]  Body, J.J.; Lipton, A.; Gralow, J.; Steger, G.G.; Gao, G.; Yeh, H.; Fizazi, K. Effects of denosumab in patients with bone metastases with and without previous bisphosphonate exposure. J. Bone Miner. Res. 2010, 25, 440–446, doi:10.1359/jbmr.090810.
[103]  The Odyssey Study: A Randomized, Double-blind, Placebo Controlled, Phase III Trial Evaluating the Palliative Benefit of Either Continuing Pamidronate or Switching to Second-Line Zoledronic Acid in Breast Cancer Patients with High Risk Bone Metastases. Available online: http://www.canadiancancertrials.ca (accessed on 15 May 2013).
[104]  Kuchuk, M.; Addison, C.L.; Clemons, M.; Kuchuk, I.; Wheatley-Price, P. Incidence and consequences of bone metastases in lung cancer patients. J. Bone Oncol. 2013, 2, 22–29, doi:10.1016/j.jbo.2012.12.004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133