全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Land  2013 

Integrating Dendrochronology, Climate and Satellite Remote Sensing to Better Understand Savanna Landscape Dynamics in the Okavango Delta, Botswana

DOI: 10.3390/land2040637

Keywords: dendrochronology, time-series analysis, NPP, precipitation, savanna

Full-Text   Cite this paper   Add to My Lib

Abstract:

This research examines the integration and potential uses of linkages between climate dynamics, savanna vegetation and landscape level processes within a highly vulnerable region, both in terms of climate variability and social systems. We explore the combined applications of two time-series methodologies: (1) climate signals detected in tree ring growth, from published literature, chronologies from the International Tree-Ring Data Bank, and minimal preliminary field data; and (2) new primary production (NPP) data of vegetation cover over time derived from remotely sensed analyses. Both time-series are related to the regional patterns of precipitation, the principle driver of plant growth in the area. The approach is temporally and spatially multiscalar and examines the relationships between vegetation cover, type and amount, and precipitation shifts. We review literature linking dendrochronology, climate, and remotely sensed imagery, and, in addition, provide unique preliminary analyses from a dry study site located on the outer limit of the Okavango Delta. The work demonstrates integration across the different data sources, to provide a more holistic view of landscape level processes occurring in the last 30-50 years. These results corroborate the water-limited nature of the region and the dominance of precipitation in controlling vegetation growth. We present this integrative analysis of vegetation and climate change, as a prospective approach to facilitate the development of long-term climate/vegetation change records across multiple scales.

References

[1]  Intergovernmental Panel on Climate Change (CCI). The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007.
[2]  Davis, M.B. Climate Change and the Survival of Forest Species. In The Earth in Transition: Patterns and Processes of Biotic Impoverishment; Woodwell, G.M., Ed.; Cambridge University Press: Cambridge, UK, 1990; pp. 99–110.
[3]  Malcolm, J.R.; Markham, A.; Neilson, R.P.; Garaci, M. Estimated migration rates under scenarios of global climate change. J. Biogeogr. 2002, 29, 835–849, doi:10.1046/j.1365-2699.2002.00702.x.
[4]  Houghton, J. Global Warming: The Complete Briefing; Cambridge University Press: Cambridge, UK, 1997.
[5]  Delcourt, P.A.; Delcourt, H.R. Late-quaternary dynamics of temperate forests: Applications of paleoecology to issues of global environmental change. Quat. Sci. Rev. 1987, 6, 129–146.
[6]  Davis, M.B.; Shaw, R.G. Range shifts and adaptive responses to quaternary climate change. Science 2001, 292, 673–679, doi:10.1126/science.292.5517.673.
[7]  Scott, L. Late quaternary forest history in Venda, Southern Africa. Rev. Paleobot. Palynol. 1987, 53, 1–10, doi:10.1016/0034-6667(87)90008-X.
[8]  Scott, L. Climatic conditions in Southern Africa since the last glacial maximum, inferred from pollen analysis. Paleogeogr. Paleoclim. Paleoecol. 1989, 70, 345–353, doi:10.1016/0031-0182(89)90112-0.
[9]  Dupont, L.M.; Caley, T.; Kim, J-H.; Castaneda, I.; Malaize, B.; Giraudeau, J. Glacial-interglacial vegetation dynamics in South Eastern Africa depend on sea surface temperature variations in the West Indian Ocean. Clim. Past Discuss. 2011, 7, 2261–2296, doi:10.5194/cpd-7-2261-2011.
[10]  Ekblom, A. Forest-savanna dynamics in the coastal lowland of southern Mozambique since C. AD 1400. The Holocene 2008, 18, 1247–1257, doi:10.1177/0959683608096599.
[11]  Scott, L.; Bousman, C.B. Palynological analysis of hyrax middens from Southern Africa. Paleogeogr. Paleoclim. Paleoecol. 1990, 76, 367–379, doi:10.1016/0031-0182(90)90121-M.
[12]  Kambatuku, J.R.; Cramer, M.D.; Ward, D. Intraspecific competition between shrubs in a semi-arid savanna. Plant Ecol. 2011, 212, 1701–1713.
[13]  Scholes, R.; Walker, B. An African Savanna: Synthesis of the Nylsvley Study; Cambridge University Press: New York, NY, USA, 1993.
[14]  Hanan, N.; Lehmann, C. Tree-Grass. Interactions in Savannas: Paradigms, Contradictions, and Conceptual Models. In Ecosystem Function in Savannas; Hill, M., Hanan, N., Eds.; Taylor and Francis Group: Boca Raton, FL, USA, 2010; pp. 39–53.
[15]  Ellis, J.E.; Swift, D.M. Stability of African pastoral ecosystems: Alternate paradigms and implications for development. J. Range Manag. 1988, 41, 450–459, doi:10.2307/3899515.
[16]  Zen, N.; Neelin, D. The role of vegetation-climate interaction and interannual variability in shaping the African savanna. J. Climate 2000, 13, 2665–2670, doi:10.1175/1520-0442(2000)013<2665:TROVCI>2.0.CO;2.
[17]  Meyer, K.M.; Wiegand, K.; Ward, D.; Moustakas, A. The rhythm of savanna patch dynamics. J. Ecol. 2007, 95, 1306–1315, doi:10.1111/j.1365-2745.2007.01289.x.
[18]  Gillson, L.; Hoffman, M.T. Rangeland ecology in a changing world. Science 2007, 315, 53–54, doi:10.1126/science.1136577.
[19]  Blaikie, P.; Brookfield, H. Land Degradation and Society; Methuen: London, UK, 1987.
[20]  Johnson, D.L.; Lewis, L. Land Degradation: Creation and Destruction; Blackwell: Oxford, UK, 2004.
[21]  Thomas, D.S.G.; Twyman, C. Good or bad rangeland? Hybrid knowledge, science and local understandings of vegetation dynamics in the Kalahari. Land Degrad. Dev. 2004, 15, 215–231, doi:10.1002/ldr.610.
[22]  Ringrose, S.; Matbeson, W.; Tempest, F.; Boyle, T. The development and causes of range degradation features in south-east Botswana using multi-temporal Landsat MSS imagery. Photogramm. Eng. Remote Sens. 1990, 56, 1253–1262.
[23]  Barnes, R.F.W. The effect of elephant browsing on woodlands in a Tanzanian National Park: Measurements, models and management. J. Appl. Ecol. 1983, 20, 521–539, doi:10.2307/2403524.
[24]  Baxter, P.W.J.; Getz, W.M. A model-framed evaluation of elephant effects on tree and fire dynamics in African Savannas. Ecol. Appl. 2005, 15, 1331–1341, doi:10.1890/02-5382.
[25]  Ntumi, C.P.; van Varde, R.J.; Fairall, N.; de Boer, W.F. Use of space and habitat by elephants in the Maputo Elephant Reserve, Mozambique. South. Afr. J. Wildl. Res. 2005, 35, 139–146.
[26]  Campo-Bescos, M.; Munoz-Carpena, R.; Kaplan, D.; Southworth, J.; Zhu, L.; Waylen, P. Beyond precipitation: Physiographic gradients dictate the relative importance of environmental drivers on savanna vegetation. PLOS One 2013, 8, e72348.
[27]  Sankaran, M.; Hanan, N.; Scholes, R.J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Roux, X.L.; Ludwig, F.; et al. Determinants of woody cover in African savannas. Nature 2005, 438, 1038.
[28]  Fichtler, E.; Trouet, V.; Beeckman, H.; Coppin, P.; Worbes, M. Climatic signals in tree rings of Burkea Africana. Trees 2004, 18, 442–451.
[29]  Rozendaal, D.M.A.; Zuidema, P.A. Dendroecology in the tropics: A review. Trees 2010, 25, 3–16, doi:10.1007/s00468-010-0480-3.
[30]  Stahle, D.W.; Mushove, P.T.; Cleaveland, M.K.; Roig, F.; Haynes, G.A. Management implications of annual growth rings in Pterocarpus angolensis from Zimbabwe. Forest Ecol. Manag. 1999, 124, 217–229, doi:10.1016/S0378-1127(99)00075-4.
[31]  Therrell, M.D.; Stahle, D.W.; Ries, L.P.; Shugart, H.H. Tree-ring reconstructed rainfall variability in Zimbabwe. Clim. Dyn. 2006, 26, 677–685, doi:10.1007/s00382-005-0108-2.
[32]  Trouet, V.; Haneca, K.; Coppin, P.; Beeckman, H. Tree ring analysis of Brachystegia spiciformis and Isoberlinia tomentosa: Evaluation of the ENSO-signal in the Miombo woodland of Eastern Africa. IAWA J. 2001, 22, 385–399, doi:10.1163/22941932-90000384.
[33]  Trouet, V.; Coppin, P.; Beeckman, H. Annual growth ring patterns in Brachystegia spiciformis reveal influence of precipitation on tree growth. Biotropica 2006, 38, 375–382, doi:10.1111/j.1744-7429.2006.00155.x.
[34]  Trouet, V.; Esper, J.; Beeckman, H. Climate/growth relationships of Brachystegia spiciformis from the miombo woodland in south central Africa. Dendrochronologia 2010, 28, 161–171, doi:10.1016/j.dendro.2009.10.002.
[35]  Gieske, A. Modelling outflow from the Jao/Boro River system in the Okavango Delta, Botswana. J. Hydrol. 1997, 193, 214–239, doi:10.1016/S0022-1694(96)03147-2.
[36]  McCarthy, T.S. The great inland deltas of Africa. J. Afr. Earth Sci. 1993, 17, 275–291, doi:10.1016/0899-5362(93)90073-Y.
[37]  Ellery, K.; Ellery, W.N.; Rogers, K.H.; Walker, B.H. Water depth and biotic insulation: major determinants of backswamp plant community composition. Wetl. Ecol. Manag. 1991, 1, 149–162.
[38]  Hare, S.R.; Mantua, N.J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 2000, 47, 1030–1045.
[39]  Mason, S. El Ni?o, climate change and Southern African climate. Environmetrics 2001, 12, 327–345, doi:10.1002/env.476.
[40]  Chavez, F.P.; Ryan, J.; Lluta-Cota, S.E.; ?iquen, M. From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. Science 2003, 299, 217–221.
[41]  Shi, G.; Ribbe, J.; Cai, W.; Cowan, T. Multidecadal variability in the transmission of ENSO signals to the Indian Ocean. Geophys. Res. Lett. 2007, 34, L09706, doi:10.1029/2007GL029528.
[42]  Manatsa, D.; Matarira, C.H.; Mukwada, G. Relative Impacts of ENSO and Indian Ocean dipol/zonal mode on east SADC rainfall. Int. J. Climatol. 2011, 31, 558–577, doi:10.1002/joc.2086.
[43]  Ropelewski, C.F.; Halpert, M.S. Halpert global and regional scale precipitation patterns associated with the El Ni?o/Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.
[44]  Waylen, P.; Henworth, S. A note on the timing of precipitation variability in Zimbabwe as related to the Southern Oscillation. Int. J. Climatol. 1996, 16, 1137–1148, doi:10.1002/(SICI)1097-0088(199610)16:10<1137::AID-JOC69>3.0.CO;2-A.
[45]  Gaughan, A.E.; Waylen, P.R. Spatial and temporal precipitation variability in the Okavango-Kwando-Zambezi catchment, Southern Africa. J. Arid Environ. 2012, 82, 19–30, doi:10.1016/j.jaridenv.2012.02.007.
[46]  Matsuura, K.; Willmott, C. Terrestrial Air Temperature and Precipitation: 1900–2006 Gridded Monthly Time Series, Version 1.01; University of Delaware: Newark, DE, USA, 2007.
[47]  Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010.
[48]  Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA, 1968.
[49]  Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 1983, 43, 69–78.
[50]  Cook, E.R.; Holmes, R.L. Program ARSTAN Users Manual; Laboratory of Tree-Ring Research, University of Arizona: Tucson, AZ, USA, 1984.
[51]  Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob. Biogeochem. Cy. 1993, 7, 811–841, doi:10.1029/93GB02725.
[52]  Fensholt, R.; Rasmussen, K.; Kaspersen, P.; Huber, S.; Horion, S.; Swinnen, E. Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens. 2013, 5, 664–686, doi:10.3390/rs5020664.
[53]  Tucker, C.; Pinzon, J.; Brown, M.; Slayback, D.; Pak, E.; Mahoney, R.; Vermote, E.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498, doi:10.1080/01431160500168686.
[54]  Cook, B.; Pau, S. A global assessment of long-term greening and browning trends in pasture lands using the GIMMS LAI3g dataset. Remote Sens. 2013, 5, 2492–2512, doi:10.3390/rs5052492.
[55]  Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol. 2013, doi:10.1002/joc.3711.
[56]  European Commission (JRC). Global Land Cover 2000 Database, Available online: http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php (accessed on 18 March 2013).
[57]  Field, C.B.; Randerson, C.J.T.; Malmstr?m, M. Global net primary production: combining ecology and remote sensing. Remote Sens. Environ. 1995, 51, 74–97, doi:10.1016/0034-4257(94)00066-V.
[58]  Gower, S.T.; Kirschbaum, A.A. BigFoot Field Data for North American Sites,1999–2003. Data Set; Oak Ridge National Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2008.
[59]  Potter, C.; Klooster, S.; Genovese, V. Net primary production of terrestrial ecosystems from 2000 to 2009. Clim. Chang. 2012, 115, 365–378, doi:10.1007/s10584-012-0460-2.
[60]  Stahle, D.G.H.; Klimowicz, J.; Muleya, S. Pterocarpus angolensis Chronology, Zimbabewe; International Tree-Ring Data Bank (ITRDB). Available online: http://www.ncdc.noaa.gov/paleo/treering.html (accessed on 18 March 2013).
[61]  Webster, P.J. The role of hydrological processes in ocean-atmosphere interactions. Rev. Geophys. 1994, 32, 427–476, doi:10.1029/94RG01873.
[62]  Mushove, P.; Stahle, D.W.; Cleaveland, M.K. Pterocarpus angolensis Chronology, Zimbabewe; International Tree-Ring Data Bank (ITRDB). Available online: http://www.ncdc.noaa.gov/paleo/treering.html (accessed on 18 August 2013).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413