全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Lubricants  2013 

Phosphate Esters, Thiophosphate Esters and Metal Thiophosphates as Lubricant Additives

DOI: 10.3390/lubricants1040132

Keywords: phosphate ester, anti-wear additive, extreme pressure additive, ZDDP, TCP

Full-Text   Cite this paper   Add to My Lib

Abstract:

Phosphate esters, thiophosphate esters and metal thiophosphates have been used as lubricant additives for over 50 years. While their use has been extensive, a detailed knowledge of how they work has been a much more recent development. In this paper, the use of phosphate esters and thiophosphate esters as anti-wear or extreme pressure additives is reviewed with an emphasis on their mechanism of action. The review includes the use of alkyl phosphates, triaryl phosphates and metal containing thiophosphate esters. The mechanisms of these materials interacting with a range of iron and steel based bearing material are examined.

References

[1]  Marino, M.P.; Placek, D.C. Phosphate Esters. In Synthetic Lubricants and High Performance Functional Fluids; Rudnick, L.R., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 103–140.
[2]  Moy, P. Aryl phosphate ester fire-retardant additive for low-smoke vinyl applications. J. Vinyl Addit. Technol. 2004, 10, 187–192, doi:10.1002/vnl.20028.
[3]  Barr, D.B.; Bravo, R.; Weerasekera, G.; Caltabiano, L.M.; Whitehead, R.D., Jr.; Olsson, A.O.; Caudill, S.P.; Schober, S.E.; Pirkle, J.L.; Sampson, R.J.; Needham, L.L. Concentrations of dialkyl phosphate metabolites of organophosphorus pesticides in the U.S. population. Environ. Health Perspect. 2004, 112, 186–200.
[4]  Oldenhoveda de Guertechin, L. Surfactants: Classification. In Handbook of Detergents, Surfactant Science Series; Broze, G., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1999; Volume 82, pp. 18–20.
[5]  McDonald, R.A. Zinc Dialkyldithiophosphates, Chemical Industries. In Lubricant Additives: Chemistry and Applications, 2nd ed.; Rudnick, L.R., Ed.; CRC Press: Boca Raton, FL, USA, 2009; Volume 124, pp. 51–62.
[6]  Champy, P. Lubricants. Fr. Patent 784803, 1935.
[7]  Selby, T.W. Analysis of engine oil and phosphorus volatility. Tribotest 2000, 6, 347–355, doi:10.1002/tt.3020060404.
[8]  Selby, T.W. Phosphorus volatility of engine oils: Use of the phosphorus emission index. Tribotest 2005, 11, 247–268, doi:10.1002/tt.3020110307.
[9]  Asseff, P.A. Lubricants Suitable for Internal-Combustion Engines. U.S. Patent , 1941.
[10]  Cook, E.W.; Thomas, W.D., Jr. Lubricating-oil Addition Agents. U.S. Patent 1944.
[11]  Fruehler, H.C. Antioxidant for Lubricating Oils. U.S. Patent 1944.
[12]  Fruehler, H.C. Antioxidant for Lubricating Oils. U.S. Patent 1944.
[13]  Varlot, K.; Kasrai, M.; Martin, J.M.; Vacher, B.; Bancroft, G.M.; Yamaguchi, E.S.; Ryason, P.R. Anti-wear film formation from neutral and basic ZDDP, influence of the reaction temperature and concentration. Tribol. Lett. 2000, 8, 9–16.
[14]  Burn, A.J. The mechanism of the antioxidant action of zinc dialkyl dithiophosphates. Tetrahedron 1966, 22, 2153–2161, doi:10.1016/S0040-4020(01)82135-9.
[15]  Bidwell, J.B.; Williams, R.K. The new look in lubricating oils. SAE Trans. 1955, 63, 349–361.
[16]  Stanley, C.S.; Larson, R. The performance of zinc dithiophosphates as lubricating oil additives. SAE J. 1958, 107, 107–120.
[17]  Spikes, H. The history and mechanisms of ZDDP. Tribol. Lett. 2004, 17, 469–489, doi:10.1023/B:TRIL.0000044495.26882.b5.
[18]  Barnes, A.M.; Bartle, K.D.; Thibon, V.R.A. A review of zinc dialkyldithiophosphates (ZDDPS): Characterization and role in the lubricating oil. Tribol. Int. 2001, 34, 389–395, doi:10.1016/S0301-679X(01)00028-7.
[19]  Harrison, P.G.; Kikabhai, T. Proton and phosphorus-31 nuclear magnetic resonance study of zinc(II) O,O′-dialkyl dithiophosphates in solution. J. Chem. Soc. Dalton Trans. 1987, 807–814.
[20]  Harrison, J.J.; Chan, C.Y.; Onopchenko, A.; Pradhan, A.R.; Petersen, M. Neutral zinc(II) O,O-dialkyldithiophosphates—Variable temperature 31P NMR and quantum chemical study of the ZDDP monomer-dimer equilibrium. Magn. Reson. Chem. 2008, 46, 115–124.
[21]  Haiduc, I.; Sowerby, D.B.; Shao-Fang, L. Stereochemical aspects of phosphor-1,1-dithiolato metal complexes (dithiophosphates, dithiophosphinates): Coordination patterns, molecular structures and supramolecular associations—I. Polyhedron 1995, 14, 3389–3472, doi:10.1016/0277-5387(95)00108-5.
[22]  Yamaguchi, E.S.; Primer, R.L.; Aragon, S.R.; Labrador, E.Q. Dynamic light scattering studies of neutral diisobutyl zinc dithiophosphate. Tribol. Transactions 1997, 40, 330–338, doi:10.1080/10402009708983662.
[23]  Armstrong, D.R.; Ferrari, E.S.; Roberts, K.J.; Adams, D. An investigation into the molecular stability of zinc di-alkyl-di-thiophosphates (ZDDPs) in relation to their use as anti-wear and anti-corrosion additives in lubricating oils. Wear 1997, 208, 138–146, doi:10.1016/S0043-1648(96)07332-2.
[24]  Yamaguchi, E.S.; Ryason, P.R.; Labrador, E.Q.; Hansen, T.P. Comparison of the relative performance of neutral and basic ZnDTP salts. Tribol. Trans. 1996, 39, 220–224, doi:10.1080/10402009608983524.
[25]  Peng, P.; Hong, S.Z.; Lu, W.Z. The degradation of zinc dialkyldithiophosphate additives in fully formulated engine oil as studied by P-31 NMR spectroscopy. Lubr. Eng. 1994, 50, 230–235.
[26]  Vizintin, J. Oil Surface: Additive Reaction Mechanism. In Surface Modification and Mechanisms; Totten, G.E., Liang, H., Eds.; Marcel Decker, Inc.: New York, NY, USA, 2004; pp. 243–298.
[27]  Ito, T.; Igarashi, T.; Hagihara, H. The crystal structure of metal diethyldithiophosphates I. Zinc diethyldithiophosphate. Acta Cryst. 1969, 25, 2303–2309, doi:10.1107/S0567740869005619.
[28]  Lawton, S.L.; Kokotailo, G.T. The crystal and molecular structures of zinc and cadmium O,O-diisopropylphosphorodithioloates. Inorg. Chem. 1969, 8, 2410–2421, doi:10.1021/ic50081a033.
[29]  Ivanov, A.V.; Antzutkin, O.N.; Larsson, A.C.; Kritijkos, M.; Forsling, W. Polycrystalline and surface O,O′-dialkyldithiophosphate zinc(II) complexes: Preparation, 31P CP/MAS NMR and single crystal X-ray diffraction studies. Inorg. Chim. Acta 2001, 315, 26–35, doi:10.1016/S0020-1693(01)00293-6.
[30]  Larsson, A.C.; Ivanov, A.V.; Forsling, W.; Antzutkin, O.N.; Abraham, A.E.; de Dios, A.C. Correlations between 31P chemical shift anisotropy and molecular structure in polycrystalline O,O′-dialkyldithiophosphate zinc(II) and nickel(II) complexes: 31P CP/MAS NMR and ab initio quantum mechanical calculation studies. J. Am. Chem. Soc. 2005, 127, 2218–2230, doi:10.1021/ja0306112.
[31]  Suominen-Fuller, M.L.; Kasrai, M.; Bancroft, G.M.; Fyfe, K.; Tan, K.H. Solution decomposition of zinc dialkyl dithiophosphate and its effect on antiwear and thermal film formation by X-ray absorption spectroscopy. Tribol. Int. 1998, 31, 627–644, doi:10.1016/S0301-679X(98)00084-X.
[32]  Bird, R.J.; Galvin, G.D. The application of photoelectron spectroscopy to the study of EP films on lubricated surfaces. Wear 1976, 37, 143–167, doi:10.1016/0043-1648(76)90188-5.
[33]  Bancroft, G.M.; Kasrai, M.; Fuller, M.; Yin, Z.; Fyfe, K.; Tan, K.H. Mechanisms of tribochemical film formation: Stability of tribo- and thermally-generated ZDDP films. Tribol. Lett. 1997, 3, 47–51, doi:10.1023/A:1019179610589.
[34]  Bec, S.; Tonck, A.; Georges, J.M.; Coy, R.C.; Bell, J.C.; Roper, G.W. Relationship between mechanical properties and structure of zinc dithiophosphate antiwear films. Proc. R. Soc. Lond. A 1999, 455, 4181–4203, doi:10.1098/rspa.1999.0497.
[35]  Piras, F.M.; Rossi, A.; Spencer, N.D. Combined in situ (ATR FT-IR) and ex situ (XPS) study of the ZnDTP-iron surface interaction. Tribol. Lett. 2003, 15, 181–191, doi:10.1023/A:1024800900716.
[36]  Masuko, M.; Ohkido, T.; Suzuki, A.; Ueno, T. Fundamental Changes in Friction and Wear Characteristics due to ZnDTP Deterioration in Simulating Engine Oil Degradation during Use. In. In Proceedings of the 30th Leeds-Lyon Symposium on Tribology: Transient Processes in Tribology, Lyon, France, 2–8 September 2003; Elsevier: Philadelphia, PA, USA, 2004; pp. 359–356.
[37]  Rhodes, K.L.; Stair, P.C. The surface chemistry of zinc dialkyldithiophosphate, an antiwear additive on oxidized iron and steel foils. J. Vac. Sci. Technol. A 1988, 6, 971–974, doi:10.1116/1.575042.
[38]  Fuller, M.; Yin, Z.; Kasrai, M.; Bancroft, G.M.; Yamaguchi, E.S.; Ryason, P.R.; Willermet, P.A.; Tan, K.H. Chemical characterization of tribochemical and thermal films generated from neutral and basic ZDDPs using X-ray absorption spectroscopy. Tribol. Int. 1997, 30, 305–315, doi:10.1016/S0301-679X(96)00059-X.
[39]  Willermet, P.A.; Dailey, D.P.; Carter, R.O., III; Schmitz, P.J.; Zhu, W. Mechanism of formation of antiwear films from zinc dialkyldithiophosphates. Tribol. Int. 1995, 28, 177–187, doi:10.1016/0301-679X(95)98965-G.
[40]  Martin, J.M. Antiwear mechanisms of zinc dithiophosphate: A chemical hardness approach. Tribol. Lett. 1999, 6, 1–8, doi:10.1023/A:1019191019134.
[41]  Yin, Z.; Kasrai, M.; Fuller, M.; Bancroft, G.M.; Fyfe, K.; Tan, K.H. Application of soft X-ray absorption spectroscopy in chemical characterization of antiwear films generated by ZDDP part I: The effects of physical parameters. Wear 1997, 202, 172–191, doi:10.1016/S0043-1648(96)07272-9.
[42]  Fuller, M.L.; Fernandez, L.R.; Massoumi, G.R.; Lennard, W.N.; Kasrai, M.; Bancroft, G.M. The use of X-ray absorption spectroscopy for monitoring the thickness of antiwear films from ZDDP. Tribol. Lett. 2000, 8, 187–192, doi:10.1023/A:1019195404055.
[43]  Shakhvorostov, D.; Muserm, M.H.; Song, Y.; Norton, P.R. Smart materials behavior in phosphates: Role of hydroxyl groups and relevance to antiwear films. J. Chem. Phys. 2009, 131, doi:10.1063/1.3182854.
[44]  Greer, F.C. Catalyzed Lubricant Additives and Catalyzed Lubricant Systems Designed to Accelerate the Lubricant Bonding Reaction. U.S. Patent 1999.
[45]  Huq, M.Z.; Chen, X.; Aswath, P.B.; Elsenbaumer, R.L. Thermal degradation behavior of zinc dialkyldithiophosphate in presence of catalysts and detergents in neutral oil. Tribol. Lett. 2005, 19, 127–134, doi:10.1007/s11249-005-5093-4.
[46]  Nehme, G.N. The effect of FeF3/TiF3 catalysts on the thermal and tribological performance of plain oil ZDDP under extreme pressure loading. Wear 2012, 278–279, 9–17, doi:10.1016/j.wear.2011.11.004.
[47]  Nehme, G. Tribological and thermal characteristics of reduced phosphorus plain ZDDP oil in the presence of PTFE/FeF3/TiF3 under optimized extreme loading condition and a break in period using two different rotational speeds. Wear 2013, 301, 747–752, doi:10.1016/j.wear.2012.11.034.
[48]  Parekh, K.; Chen, X.; Aswath, P.B. Synthesis of fluorinated ZDDP compounds. Tribol. Lett. 2009, 34, 141–153, doi:10.1007/s11249-008-9373-7.
[49]  Ganesan, K.; Raza, S.K.; Vijayaraghavan, R. Chemical warfare agents. J. Pharm. Bioallied Sci. 2010, 2, 166–178, doi:10.4103/0975-7406.68498.
[50]  Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro. 5 and Euro. 6) and on access to vehicle repair and maintenance information. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32007R0715:EN:NOT (accessed on 12 December 2013).
[51]  Rokosz, M.J.; Chen, A.E.; Lowe-Ma, C.K.; Kucheroz, A.V.; Benson, D.; Paputa Peck, M.C.; McCabe, R.W. Characterization of phosphorus-poisoned automotive exhaust catalysts. Appl. Catal. B: Environ. 2001, 33, 205–215, doi:10.1016/S0926-3373(01)00165-5.
[52]  Spikes, H. Low and zero sulfated ash, phosphorus and sulfur anti-wear additives for engine oils. Lubr. Sci. 2008, 20, 103–136, doi:10.1002/ls.57.
[53]  Borshchevskii, S.B.; Shabanova, E.V.; Markov, A.A.; Yu Rebrov, I. Antifriction and antiwear properties of dialkyldithioaminephosphates. Chem. Technol. Fuels Oils 1984, 20, 503–506, doi:10.1007/BF00725414.
[54]  Fu, X.; Liu, W.; Xue, Q. The application research on series of ashless P-containing EP and AW additives. Ind. Lubr. Tribol. 2005, 57, 80–83, doi:10.1108/00368790510583393.
[55]  Zaskal’ko, P.P.; Parfenova, V.A.; Markov, A.A.; Lesninova, V.A.; Belov, P.S. Amidothiophosphates—Effective antiwear and extreme pressure additives for lubricating oils. Chem. Technol. Fuels Oils 1976, 12, 58–60, doi:10.1007/BF00719051.
[56]  Boreshchevskii, S.B.; Levitina, I.S.; Shabanova, E.V.; Kotova, G.G. Additives based on dithiophosphoric acids and unsaturated compounds for lubricating oils. Chem. Technol. Fuels Oils 1992, 27, 326–328.
[57]  Chem, X.; Kim, B.; Eisenbaumer, R.L.; Aswath, P.B. Synthesis and antiwear behavior of ashless alkylthioperoxydiphosphates. Tribology 2012, 6, 121–133.
[58]  Najman, M.N.; Kasrai, M.; Bancroft, G.M. Chemistry of antiwear films for ashless thiophosphate oil additives. Tribol. Lett. 2004, 17, 217–229, doi:10.1023/B:TRIL.0000032448.77085.f4.
[59]  Kim, B.H.; Mourhatch, R.; Aswath, P.B. Properties of tribofilms formed with ashless dithiophosphate and zinc dialkyldithiophosphate under extreme pressure conditions. Wear 2010, 268, 579–591, doi:10.1016/j.wear.2009.10.004.
[60]  Mangolini, F.; Rossi, A.; Spencer, N.D. Reactivity of triphenylphosphorothionate in lubricant oil solution. Tribol. Lett. 2009, 35, 31–43, doi:10.1007/s11249-009-9429-3.
[61]  Mangolini, F.; Rossi, A.; Spencer, N.D. Influence of metallic and oxidized iron/steel on the reactivity of triphenyl phosphorothionate in oil solution. Tribol. Int. 2011, 44, 670–683, doi:10.1016/j.triboint.2010.02.009.
[62]  Kim, B.H.; Jiang, J.C.; Aswath, P.B. Mechanism of wear at extreme load and boundary conditions with ashless anti-wear additives: Analysis of wear surfaces and wear debris. Wear 2011, 270, 181–194, doi:10.1016/j.wear.2010.10.058.
[63]  Yamamoto, Y.; Hirano, F. Scuffing resistance of phosphate esters. Wear 1978, 50, 343–348, doi:10.1016/0043-1648(78)90078-9.
[64]  Yamamoto, Y.; Hirano, F. Effect of different phosphate esters on frictional characteristics. Tribol. Int. 1980, 13, 165–169, doi:10.1016/0301-679X(80)90034-1.
[65]  Beek, O.; Givens, J.W.; Williams, E.C. On the mechanism of boundary lubrication. II. Wear prevention by addition agents. Proc. R. Soc. A 1940, 177, 103–118, doi:10.1098/rspa.1940.0113.
[66]  Cottington, R.L.; Ravner, H. Interactions in neopentyl polyol ester-tricresyl phosphate—Iron system at 500 F. ASLE Trans. 1969, 12, 280–286, doi:10.1080/05698196908972273.
[67]  Jones, R.L.; Ravner, H.; Cottington, R.L. Inhibition of iron-catalyzed neopentyl polyol ester thermal degradation through passivation of the active metal surface by tricresyl phosphate. ASLE Trans. 1970, 13, 1–10, doi:10.1080/05698197008972276.
[68]  Sasaki, K.; Inauoshi, N.; Tashiro, K. Friction-induced dynamic chemical changes of tricresyl phosphate as lubricant additive observed under boundary lubrication with 2D fast imaging FTIR-ATR spectrometer. Wear 2010, 268, 911–916, doi:10.1016/j.wear.2009.12.017.
[69]  Song, D.; Gellman, A.J. The surface chemistry of alkyl and arylphosphate vapor phase lubricants on Fe foil. Tribol. Int. 2002, 35, 579–590, doi:10.1016/S0301-679X(02)00045-2.
[70]  Graham, E.E.; Klaus, E.E. Lubrication from the vapor phase at high temperatures. ASLE Trans. 1986, 29, 229–234, doi:10.1080/05698198608981682.
[71]  Forster, N.H. Rolling contact testing of vapor phase lubricants—Part III: Surface analysis. Tribol. Trans. 1999, 42, 1–9, doi:10.1080/10402009908982183.
[72]  Sheaffer, S.K. High temperature reaction of aryl phosphate esters on an iron film. Tribol. Trans. 2003, 46, 332–338, doi:10.1080/10402000308982634.
[73]  Saba, C.S.; Forster, N.H. Reaction of aromatic phosphate esters with metals and their oxides. Tribol. Lett. 2002, 12, 135–146, doi:10.1023/A:1014081523491.
[74]  Trivedi, H.K.; Forster, N.H.; Saba, C.S. Rolling contact fatigue testing of a 3 cSt polyolester lubricant with and without TCP and DODPA/PANA at 177 °C. Tribol. Lett. 2004, 16, 231–237, doi:10.1023/B:TRIL.0000009734.35530.d8.
[75]  Johnson, D.W.; Morrow, S.J.; Forster, N.; Saba, C.S. Vapor-phase lubrication: Reaction of phosphate ester vapors with iron and steel. Chem. Mater. 2002, 14, 3767–3775, doi:10.1021/cm010921o.
[76]  Johnson, D.W.; Morrow, S.J. Decomposition of butylated triphenylphosphate on steel surfaces. University of Dayton, Dayton, OH, USA. Unpublished work, 2002.
[77]  Grant, D.H.; Chin, H.A.; Klenke, C.; Galbato, A.T.; Ragan, M.A.; Spitzer, R.F. High Temperature Turbine Engine Bearing and Lubrication System Development. In Bearing Steels: Into the 21st Century; Hoo, J.J.C., Green, W.B., Eds.; American Society for Testing and Materials: Conshohocken, PA, USA, 1998; pp. 409–435.
[78]  Trivedi, H.K.; Forster, N.H.; Rosado, L. Rolling contact fatigue evaluation of advanced steels with and without the oil anti-wear additive tricresyl phosphate. Tribol. Lett. 2011, 41, 597–605, doi:10.1007/s11249-010-9738-6.
[79]  Johnson, D.W.; Hils, J.E.; Forster, N. Interaction of polyol esters and phosphate esters with metal carbides. Tribol. Lett. 2011, 42, 223–232, doi:10.1007/s11249-011-9766-x.
[80]  Johnson, D.W.; Iacullo, C.; Hils, J.E. Reaction between polyol-esters and phosphate esters in the presence of metal carbides. Frict. Wear Res. 2013, 1, 1–9.
[81]  Johnson, D.W.; Bachus, M.; Hils, J.E. Interaction between lubricants containing phosphate ester additives and stainless steels. Lubricants 2013, 1, 48–60, doi:10.3390/lubricants1020048.
[82]  Gschwender, L.J.; Kramer, D.C.; Lok, B.K.; Sharma, S.K.; Snyder, C.E., Jr.; Sztenderowicz, M.L. Liquid Lubricants and Lubrication. In Modern Tribology Handbook; Bhushan, B., Ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 361–382.
[83]  Johannsen, F.R.; Wright, P.L.; Gordon, D.E.; Levinskas, G.J.; Radue, R.W.; Graham, P.R. Evaluation of delayed neurotoxicity and dose-response relationships of phosphate esters in the adult hen. Toxicol. Appl. Pharm. 1977, 41, 291–304, doi:10.1016/0041-008X(77)90030-8.
[84]  Schopfer, L.M.; Furlong, C.E.; Lockridge, O. Development of diagnostics in the search for an explanation of aerotoxic syndrome. Anal. Biochem. 2010, 404, 64–74, doi:10.1016/j.ab.2010.04.032.
[85]  Michaelis, S. Contaminated aircraft cabin air. J. Biol. Phys. Chem. 2011, 11, 132–145, doi:10.4024/41111/11-4-abs1.jbpc.11.04.
[86]  Baker, P.E.; Cole, T.B.; Cartwright, M.; Suzuki, S.M.; Thummel, K.E.; Lin, Y.S.; Co, A.L.; Rettie, A.E.; Kim, J.H.; Furlong, C.E. Identifying safer anti-wear triaryl phosphate additives for jet engine lubricant. Chem. Biol. Addit. 2013, 203, 257–264.
[87]  Brown, M.A.; Brix, K.A. Review of health consequences from high, intermediate and low-level exposure to organophosphorus nerve agents. J. Appl. Toxicol. 1998, 18, 393–408, doi:10.1002/(SICI)1099-1263(199811/12)18:6<393::AID-JAT528>3.0.CO;2-0.
[88]  Kidd, J.G.; Langworthy, O.R. Jake paralysis: Paralysis following the ingestion of Jamaica ginger extract adulterated with tri-ortho-cresyl phosphate. Bull. Johns Hopkins Hosp. 1933, 52, 39–65.
[89]  Smith, H.V.; Spaulding, J.M.K. Outbreak of paralysis in Morocco due to ortho-cresyl phosphate poisoning. Lancet 1959, 274, 1019–1021, doi:10.1016/S0140-6736(59)91486-2.
[90]  Carletti, E.; Schopfer, L.M.; Colletier, J.P.; Froment, M.T.; Nachon, F.; Weik, M.; Lockridge, O.; Masson, P. Reaction of cresyl salingen phosphate, the organophosphorus agent implicated in aerotoxic syndrome with human cholinesterases: Mechanistic studies employing kinetics, mass spectrometry and X-ray structure analysis. Chem. Res. Toxicol. 2011, 24, 797–808, doi:10.1021/tx100447k.
[91]  Rubey, W.A.; Streibich, R.C.; Bush, J.; Centers, P.W.; Wright, R.L. Neurotoxin formations from pilot-scale incineration of synthetic ester turbine lubricants with triaryl phosphate additive. Arch. Toxicol. 1996, 70, 508–509, doi:10.1007/s002040050306.
[92]  Centers, P.W. Potential neurotoxin formation in thermally degraded synthetic ester turbine lubricants. Arch. Toxicol. 1992, 66, 679–680, doi:10.1007/BF01981509.
[93]  Wyman, J.F.; Porvezuik, M.; Serve, P.; Hobson, D.; Uddin, D.E. High temperature decomposition of military specification L-23699 synthetic aircraft lubricants. J. Fire Sci. 1987, 5, 162–177, doi:10.1177/073490418700500303.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133