Recently, gradient performance and fidelity has become of increasing interest, as the fidelity of the magnetic resonance (MR) image is somewhat dependent on the fidelity of the gradient system. In particular, for high fidelity non-Cartesian imaging, due to non-fidelity of the gradient system, it becomes necessary to know the actual k-space trajectory as opposed to the requested trajectory. In this work we show that, by considering the gradient system as a linear time-invariant system, the gradient impulse response function (GIRF) can be reliably measured to a relatively high degree of accuracy with a simple setup, using a small phantom and a series of simple experiments. It is shown experimentally that the resulting GIRF is able to predict actual gradient performance with a high degree of accuracy. The method captures not only the frequency response but also gradient timing errors and artifacts due to mechanical vibrations of the gradient system. Some discussion is provided comparing the method presented here with other analogous methods, along with limitations of these methods.
References
[1]
Tan, H.; Meyer, C.H. Estimation of k-space trajectories in spiral MRI. Magn. Reson. Med?2009, 61, 1396–1404, doi:10.1002/mrm.21813. 19353671
[2]
King, K.F.; Ganin, A.; Zhou, X.J.; Bernstein, M.A. Concomitant gradient field effects in spiral scans. Magn. Reson. Med?1999, 41, 103–112, doi:10.1002/(SICI)1522-2594(199901)41:1<103::AID-MRM15>3.0.CO;2-M. 10025617
[3]
Wysong, R.E.; Lowe, I.J. A simple method of measuring gradient induced eddy currents to set compensation networks. Magn. Reson. Med?1993, 29, 119–121, doi:10.1002/mrm.1910290121. 8419731
[4]
Jehenson, P.; Westphal, M.; Schuff, N. Analytical method for the compensation of eddy-current effects induced by pulsed magnetic field gradients in NMR systems. J. Magn. Reson?1990, 90, 264–278.
[5]
Liu, Q.; Hughes, D.G.; Allen, P.S. Quantitative characterization of the eddy current fields in a 40-cm bore superconducting magnet. Magn. Reson. Med?1994, 31, 73–76, doi:10.1002/mrm.1910310112. 8121273
[6]
Mason, G.F.; Harshbarger, T.; Hetherington, H.P.; Zhang, Y.; Pohost, G.M.; Twieg, D.B. A method to measure arbitrary k-space trajectories for rapid MR imaging. Magn. Reson. Med?1997, 38, 492–496, doi:10.1002/mrm.1910380318. 9339451
[7]
Takahashi, A.; Peters, T. Compensation of multi-dimensional selective excitation pulses using measured k-space trajectories. Magn. Reson. Med?1995, 34, 446–456, doi:10.1002/mrm.1910340323. 7500885
Duyn, J.H.; Yang, Y.; Frank, J.A.; van der Veen, J.W. Simple correction method for k-space trajectory deviations in MRI. J. Magn. Reson?1998, 132, 150–153, doi:10.1006/jmre.1998.1396. 9615415
[10]
Alley, M.T.; Glover, G.H.; Pelc, N.J. Gradient characterization using a Fourier-transform technique. Magn. Reson. Med?1998, 39, 581–587, doi:10.1002/mrm.1910390411. 9543420
[11]
Beaumont, M.; Lamalle, L.; Segebarth, C.; Barbier, E.L. Improved k-space trajectory measurement with signal shifting. Magn. Reson. Med?2007, 58, 200–205, doi:10.1002/mrm.21254. 17659626
[12]
Han, H.; Ouriadov, A.V.; Fordham, E.; Balcom, B.J. Direct measurement of magnetic field gradient waveforms. Concepts Magn. Reson?2010, 36A, 349–360, doi:10.1002/cmr.a.20194.
[13]
Addy, N.O.; Wu, H.H.; Nishimura, D.G. Simple method for MR gradient system characterization and k-space trajectory estimation. Magn. Reson. Med?2012, 68, 120–129, doi:10.1002/mrm.23217. 22189904
[14]
De Zanche, N.; Barmet, C.; Nordmeyer-Massner, J.A.; Pruessmann, K.P. NMR probes for measuring magnetic fields and field dynamics in MR systems. Magn. Reson. Med?2008, 60, 176–186, doi:10.1002/mrm.21624. 18581363
[15]
Barmet, C.; De Zanche, N.; Pruessmann, K.P. Spatiotemporal magnetic field monitoring for MR. Magn. Reson. Med?2008, 60, 187–197, doi:10.1002/mrm.21603. 18581361
[16]
Vannesjo, S.J.; Haeberlin, M.; Kasper, L.; Pavan, M.; Wilm, B.J.; Barmet, C.; Pruessmann, K.P. Gradient system characterization by impulse response measurements with a dynamic field camera. Magn. Reson. Med?2013, 69, 583–593, doi:10.1002/mrm.24263. 22499483
[17]
Han, H.; MacGregor, R.P.; Balcom, B.J. Pure phase encode magnetic field gradient monitor. J. Magn. Reson?2009, 201, 212–217, doi:10.1016/j.jmr.2009.09.011. 19815435
[18]
Brodsky, E.K.; Samsonov, A.A.; Block, W.F. Characterizing and correcting gradient errors in non-cartesian imaging: Are gradient errors linear time-invariant (LTI)? Magn. Reson. Med?2009, 62, 1466–1476, doi:10.1002/mrm.22100. 19877274
[19]
Bhavsar, P.S.; Zwart, N.R.; Pipe, J.G. Fast, variable system delay correction for spiral MRI. Magn. Reson. Med?2013, doi:10.1002/mrm.24730.
[20]
Vannesjo, S.J.; Dietrich, B.E.; Pavan, M.; Brunner, D.O.; Wilm, B.J.; Barmet, C.; Pruessmann, K.P. Field camera measurements of gradient and shim impulse responses using frequency sweeps. Magn. Reson. Med?2013, doi:10.1002/mrm.24934.
[21]
Spees, W.M.; Buhl, N.; Sun, P.; Ackerman, J.J.H.; Neil, J.J.; Garbow, J.R. Quantification and compensation of eddy-current-induced magnetic-field gradients. J. Magn. Reson?2011, 212, 116–123, doi:10.1016/j.jmr.2011.06.016. 21764614
[22]
Goora, F.G.; Colpitts, B.G.; Balcom, B.J. Arbitrary magnetic field gradient waveform correction using an impulse response based pre-equalization technique. J. Magn. Reson?2014, 238, 70–76, doi:10.1016/j.jmr.2013.11.003. 24316188