In this study, Cellulose-based carbon fibers (CBCFs) were prepared from cellulose after phenol liquefaction and curing. The characteristics and properties of CBCFs were examined by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that, with increasing carbonization temperature, the L a, L c, and L c/ d (002) of CBCFs increased gradually, whereas the degree of disorder R decreased. The –OH, –CH 2–, –O–C– and phenyl group characteristic absorption peaks of CBCFs reduced gradually. The cross-linked structure of CBCFs was converted into a graphite structure with a six-ring carbon network during carbonization. The surface of CBCFs were mainly comprised of C–C, C–O, and C=O. The tensile strength, carbonization yield and carbon content of CBCFs obtained at 1000 °C were 1015 MPa, 52%, and 95.04%, respectively.
References
[1]
Johnson, D.J.; Frank, C. Recent advances in studies of carbon fibre structure. Phil. Trans. R. Soc. Lond. A?1980, 294, 443–449, doi:10.1098/rsta.1980.0053.
[2]
Tse-Hao, K.; Tzyy-Chin, D. The effect of pre-carbonization on the properties of PAN-based carbon fibers. Polym. Compos?1994, 15, 401–407, doi:10.1002/pc.750150604.
[3]
Rearick, B.K.; Harrison, I.R. Modification of pitch-based carbon fibers using a nickel-catalyzed oxidation treatment: Effect of treatment on fiber-matrix interfacial shear strength. Polym. Compos?1995, 16, 180–188, doi:10.1002/pc.750160210.
[4]
Ming, H.; Julien, R.; Shuhei, F.; Nagy, L.T.; Qingmin, J.; Pavuluri, S.; Katsuhiko, A.; Susumu, K.; Yusuke, Y. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc?2012, 134, 2864–2867, doi:10.1021/ja208940u. 22280024
[5]
Ming, H.; Julien, R.; Shuhei, F.; Logudurai, R.; Yuanjian, Z.; Pavuluri, S.; Hideo, I.; Hongjing, W.; Yoshihiro, N.; Norihiro, S.; et al. Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). Chem. Commun?2011, 47, 8124–8126, doi:10.1039/c1cc12378e.
[6]
Logudural, R.; Julien, R.; Shuhei, F.; Pavuluri, S.; Susumu, K.; Yusuke, Y. Preparation of microporous carbon fibers through carbonization of Al-based porous coordination polymer (Al-PCP) with furfuryl alchol. Chem. Mater?2011, 23, 1225–1231, doi:10.1021/cm102921y.
[7]
Peng, S.; Shao, H.; Hu, X. Lyocell fibers as the precursor of carbon fibers. J. Appl. Polym. Sci?2003, 90, 1941–1947, doi:10.1002/app.12879.
[8]
Narendra, R.; Yiqi, Y. Properties of High-Quality Long Natural Cellulose Fibers from Rice Straw. J. Agric. Food Chem?2006, 54, 8077–8081, doi:10.1021/jf0617723. 17032012
[9]
Plaisantin, H.; Pailler, R.; Guette, A.; Biot, M.; Pilot, J.P.; Daude, G.; Olry, P. Ex-cellulose carbon fibers with improved mechanical properties. J. Mater. Sci?2006, 41, 1959–1964.
[10]
Alma, M.H.; Yoshioka, M.; Yao, Y.; Shiraishi, N. Preparation of sulfuric acid-catalyzed phenolated wood resin. Wood Sci. Technol?1998, 32, 297–308, doi:10.1007/BF00702897.
[11]
Yu, L.L.; Cao, J.Z.; Paul, C.; Tang, Z.Z. Comparison of copper leaching from alkaline copper quat type-D treated Chinese fir and Mongolinan Scots pine after different posttreatments. Wood Fibers Sci?2010, 42, 444–449.
[12]
Ma, X.J.; Zhao, G.J. Structure and performance of fibers prepared from liquefied wood in phenol. Fibers Polym?2008, 9, 405–409, doi:10.1007/s12221-008-0065-6.
[13]
Liu, C.L.; Guo, Q.G.; Shi, J.L.; Liu, L. A study on crosslinking of phenolic fibers. Mater. Chem. Phys?2005, 90, 315–321, doi:10.1016/j.matchemphys.2004.09.015.
[14]
Wu, Q.; Pan, D. An new cellulose based carbon fiber from a lyocell precursor. Text. Res. J?2002, 72, 405–410, doi:10.1177/004051750207200506.
[15]
Kubo, S.; Kadla, J.F. Lignin-based carbon fibers: Effect of synthetic polymer blending on fiber properties. J. Polym. Environ?2005, 13, 97–105, doi:10.1007/s10924-005-2941-0.
[16]
Lin, L.; Yoshioka, M.; Yao, Y.; Shiraishi, N. Physical properties of moldings from liquefied wood resins. J. Appl. Polym. Sci?1995, 55, 1563–1571, doi:10.1002/app.1995.070551107.
[17]
Edie, D.D. The effect of processing on the structure and properties of carbon fibers. Carbon?1998, 36, 345–362, doi:10.1016/S0008-6223(97)00185-1.
[18]
Donnet, J.B.; Qin, R.Y. Study of carbon fiber surfaces by scanning tunneling microscopy, part II—PAN-based high strength carbon fibers. Carbon?1993, 31, 7–12, doi:10.1016/0008-6223(93)90149-5.
[19]
Richards, B.P. Relationships between interlayer spacing, stacking order and crystallinity in carbon materials. J. Appl. Cryst?1968, 1, 35–48, doi:10.1107/S0021889868004978.
[20]
Huiming, C.; Hiroyuki, E.; Toshihiro, O.; Kouji, S.; Guobin, Z. Graphitization behavior of wood ceramic and bamboo ceramics as determined by X-ray diffraction. J. Porous Mater?1999, 6, 233–237, doi:10.1023/A:1009684014651.
[21]
Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys?1970, 53, 1126–1130, doi:10.1063/1.1674108.
[22]
Melanitis, N.; Tetlow, P.L.; Galiotis, C. Characterization of PAN-based carbon fibers with laser Raman spectroscopy. J. Mater. Sci?1996, 31, 851–860, doi:10.1007/BF00352882.
[23]
Fauteux, C.; Pegna, J. Radial characterization of 3D-LVCD carbon fibers by Raman spectroscopy. Appl. Phys. A?2004, 78, 883–888, doi:10.1007/s00339-003-2084-x.
[24]
Paiva, M.C.; Bernardo, C.A.; Nardin, M. Mechanical, surface and interfacial characterisation of pitch and PAN-based carbon fibres. Carbon?2000, 38, 1323–1337, doi:10.1016/S0008-6223(99)00266-3.
[25]
Park, S.; Seo, M.; Lee, Y. Surface characteristics of fluorine-modified PAN-based carbon fibers. Carbon?2003, 41, 723–730, doi:10.1016/S0008-6223(02)00384-6.