全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Materials  2014 

Controlled Synthesis of Carbon Nanoparticles in a Supercritical Carbon Disulfide System

DOI: 10.3390/ma7010097

Keywords: carbon nanoparticles, chemical synthesis, Raman spectroscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Carbon nanoparticles with large surface areas were produced by the reduction of carbon disulfide with metallic lithium at 500 °C. The carbon nanoparticles account for about 80% of the carbon product. The carbon nanoparticles were characterized by X-ray powder diffraction, field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy and N 2 physisorption. The results showed that carbon nanoparticles predominate in the product. The influence of experimental conditions was investigated, which indicated that temperature plays a crucial role in the formation of carbon nanoparticles. The possible formation mechanism of the carbon nanoparticles was discussed. This method provides a simple and efficient route to the synthesis of carbon nanoparticles.

References

[1]  Laforgue, A.; Simon, P.; Fauvarque, J.F.; Mastragostino, M.; Soavi, F.; Sarrau, J.F.; Lailler, P.; Conte, M.; Rossi, E.; Saguatti, S. Activated carbon/conducting polymer hybrid supercapacitors. J Electrochem. Soc?2003, 150, A645–A651.
[2]  Dominko, R.; Gaberscek, M.; Drofenik, J.; Bele, M.; Jamnik, J. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochim. Acta?2003, 48, 3709–3716.
[3]  Li, H.T.; He, X.D.; Liu, Y.; Huang, H.; Lian, S.Y.; Lee, S.T.; Kang, Z.H. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon?2011, 49, 605–609.
[4]  Ray, S.C.; Saha, A.; Jana, N.R.; Sarkar, N.R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C?2009, 113, 18546–18551.
[5]  Larciprete, R.; Lizzit, S.; Botti, S.; Cepek, C.; Goldoni, A. Structural reorganization of carbon nanoparticles into single-wall nanotubes. Phys. Rev. B?2002, 66, 12140–12142.
[6]  Gherghel, L.; Kubel, C.; Lieser, G.; Rader, H.J.; Mullen, K. Pyrolysis in the mesophase: A chemist’s approach toward preparing carbon nano- and microparticles. J. Am. Chem. Soc?2002, 124, 13130–13138.
[7]  Ding, L.H.; Olesik, S.V. Synthesis of polymer nanospheres and carbon nanospheres using the monomer 1,8-dihydroxymethyl-1,3,5,7-octatetrayne. Nano Lett?2004, 4, 2271–2276.
[8]  Néabo, J.R.; Gagné, S.R.; Carrière, C.V.; Morin, J.F. Soluble conjugated one-dimensional nanowires prepared by topochemical polymerization of a butadiynes-containing star-shaped molecule in the xerogel state. Langmuir?2013, 29, 3446–3452.
[9]  Ding, L.H.; Olesik, S.V. Carbon microbeads produced through synthesis and pyrolysis of poly(1,8-dibutyl-1,3,5,7-octatetrayne). Chem. Mater?2005, 17, 2353–2360.
[10]  Yu, J.; Ahn, J.; Zhang, Q.; Yoon, S.F.; Rusli, Li.; Y.J.; Gan, B.; Chew, K.; Tan, K.H. Catalyzed growth of carbon nanoparticles by microwave plasma chemical vapor deposition and their field emission properties. J. Appl. Phys?2002, 91, 433–436.
[11]  Wang, X.Z.; Hu, Z.; Chen, X.; Chen, Y. Preparation of carbon nanotubes and nanoparticles by microwave plasma-enhanced chemical vapor deposition. Scr. Mater?2001, 44, 1567–1570.
[12]  Hsu, W.K.; Terrones, M.; Hare, J.P.; Terrones, H.; Kroto, H.W.; Walton, D.R.M. Electrolytic formation of carbon nanostructures. Chem. Phys. Lett?1996, 262, 161–166.
[13]  Jang, J.; Oh, J.H.; Stucky, G.D. Fabrication of ultrafine conducting polymer and graphite nanoparticles. Angew. Chem. Int. Ed?2002, 41, 4016–4019.
[14]  Asano, H.; Muraki, S.; Endo, H.; Bandow, S.; Iijima, S. Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas. J. Phys. Condens. Matt?2010, 22, 1–6.
[15]  Yang, X.G.; Li, C.; Wang, W.; Yang, B.J.; Zhang, S.Y.; Qian, Y.T. A chemical route from PTFE to amorphous carbon nanospheres in supercritical water. Chem. Commun?2004, 3, 342–343.
[16]  Lou, Z.S.; Chen, Q.W.; Zhang, Y.F.; Wang, W.; Qian, Y.T. Diamond formation by reduction of carbon dioxide at low temperatures. J. Am. Chem. Soc?2003, 125, 9302–9303.
[17]  Lou, Z.S.; Chen, Q.W.; Zhang, Y.F.; Qian, Y.T.; Wang, W. Synthesis of large-size diamonds by reduction of dense carbon dioxide with alkali metals (K, Li). J. Phys. Chem. B?2004, 108, 4239–4241.
[18]  Reznik, D.; Olk, C.H.; Neumann, D.A. X-ray powder diffraction from carbon nanotubes and nanoparticles. Phys. Rev. B?1995, 52, 116–124.
[19]  Lou, Z.S.; He, M.L.; Zhao, D.J.; Li, Z.C.; Shang, T.M. Synthesis of carbon nanorods by reduction of carbon disulfide. J. Alloys Comp?2010, 507, 38–41.
[20]  Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys?1970, 53, 1126–1130.
[21]  Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc?1951, 73, 373–380.
[22]  Rzepka, M.; Lamp, P.; Casa-Lillo, M.A. Physisorption of hydrogen on microporous carbon and carbon nanotubes. J. Phys. Chem. B?1998, 102, 10894–10898.
[23]  Hou, P.X.; Yang, Q.H.; Bai, S.; Xu, S.T.; Liu, M.; Cheng, H.M. Bulk storage capacity of hydrogen in purified multiwalled carbon nanotubes. J. Phys. Chem B?2002, 106, 963–966.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133