全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Materials  2014 

Room Temperature Ferromagnetic Mn:Ge(001)

DOI: 10.3390/ma7010106

Keywords: molecular beam epitaxy (MBE), Mn-Ge ferromagnetism, low energy electron diffraction (LEED), scanning tunneling microscopy (STM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), magneto optical Kerr effect (MOKE), superconducting quantum interference device (SQUID) magnetometry, diluted magnetic semiconductors (DMS)

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001), heated at relatively high temperature (starting with 250 °C). The samples were characterized by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), superconducting quantum interference device (SQUID), and magneto-optical Kerr effect (MOKE). Samples deposited at relatively elevated temperature (350 °C) exhibited the formation of ~5–8 nm diameter Mn 5Ge 3 and Mn 11Ge 8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe ~2.5 phase, or manganese diluted into the Ge(001) crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm) deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001). The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

References

[1]  Park, Y.D.; Hanbicki, A.T.; Erwin, S.C.; Hellberg, C.S.; Sullivan, J.M.; Mattson, J.E.; Ambrose, T.F.; Wilson, A.; Spanos, G.; Jonker, B.T. A Group-IV Ferromagnetic Semiconductor: Mnx Ge1?x. Science?2002, 295, 651–654, doi:10.1126/science.1066348. 11809964
[2]  Tsui, F.; He, L.; Ma, L.; Tkachuk, A.; Chu, Y.S.; Nakajima, K.; Chikyow, T. Novel germanium-based magnetic semiconductors. Phys. Rev. Lett?2003, 91, 177203:1–177203:4.
[3]  Huttel, Y.; Teodorescu, C.M.; Bertran, F.; Krill, G. Experimental evidence of long range magnetic order in the c(2 × 2) MnCu(100) surface alloy. Phys. Rev?2001, 64, 094405:1–094405:4.
[4]  Sangaletti, L.; Magnano, E.; Bondino, F.; Cepek, C.; Sepe, A.; Goldoni, A. Electronic properties of the ordered metallic Mn:Ge(111) interface. Phys. Rev?2005, 72, 035434:1–035434:6.
[5]  Zheng, C.; Zhang, Z.; van Benthem, K.; Chisholm, M.F.; Weitering, H.H. Optimal doping control of magnetic semiconductors via subsurfactant epitaxy. Phys. Rev. Lett?2008, 100, 066101:1–066101:4.
[6]  Hansen, M.; Anderko, K. Constitution of Binary Alloys; McGraw-Hill: New York, NY, USA, 1958; p. 766.
[7]  Zeng, C.; Erwin, S.C.; Feldman, L.C.; Li, A.P.; Jin, R.; Song, Y.; Thompson, J.R.; Weitering, H.H. Epitaxial ferromagnetic Mn5Ge3 on Ge(111). Appl. Phys. Lett?2003, 83, 5002–5004, doi:10.1063/1.1633684.
[8]  Kang, J.S.; Kim, G.; Wi, S.C.; Lee, S.S.; Choi, S.; Cho, S.; Han, S.W.; Kim, K.H.; Song, H.J.; Shin, H.J.; et al. Spatial chemical inhomogeneity and local electronic structure of Mn-doped Ge ferromagnetic semiconductors. Phys. Rev. Lett?2005, 94, 147202:1–147202:4.
[9]  De Padova, P.; Ayoub, J.-P.; Berbezier, I.; Perfetti, P.; Quaresima, C.; Testa, A.M.; Fiorani, D.; Olivieri, B.; Mariot, J.-M.; Taleb-Ibrahimi, A.; et al. Mn0.06Ge0.94 diluted magnetic semiconductor epitaxially grown on Ge(001): Influence of Mn5Ge3 nanoscopic clusters on the electronic and magnetic properties. Phys. Rev?2008, 77, 045203:1–045203:7.
[10]  Zeng, C.; Zhu, W.; Erwin, S.C.; Zhang, Z.; Weitering, H.H. Initial stages of Mn adsorption on Ge(111). Phys. Rev?2004, 70, 205340:1–205340:8.
[11]  Ahlers, S.; Stone, P.R.; Sircar, N.; Arenholz, E.; Dubon, O.D.; Bougeard, D. Comparison of the magnetic properties of GeMn thin films through Mn L-edge x-ray absorption. Appl. Phys. Lett?2009, 95, 151911:1–151911:3.
[12]  Ahlers, S.; Bougeard, D.; Sircar, N.; Abstreiter, G.; Trampert, A.; Opel, M.; Gross, R. Magnetic and structural properties of Gex Mn1?x films: Precipitation of intermetallic nanomagnets. Phys. Rev?2006, 74, 214411:1–214411:8.
[13]  Jamet, M.; Barski, A.; Devillers, T.; Poydenot, V.; Dujardin, R.; Bayle-Guillemaud, P.; Rothman, J.; Bellet-Amalric, E.; Marty, A.; Cibert, J.; et al. High-Curie-temperature ferromagnetismin self-organized Ge1?x Mnx nanocolumns. Nature Mater?2006, 5, 653–659, doi:10.1038/nmat1686.
[14]  Mouton, I.; Lardé, R.; Talbot, E.; Cadel, E.; Genevois, C.; Blavette, D.; Baltz, V.; Prestat, E.; Bayle-Guillemaud, P.; Barski, A.; et al. Composition and morphology of self-organized Mn-rich nanocolumns embedded in Ge: Correlation with the magnetic properties. J. Appl. Phys?2012, 112, 113918:1–113918:7.
[15]  Olive-Mendez, S.; Spiesser, A.; Michez, L.A.; Le Thanh, V.; Glachant, A.; Derrien, J.; Devillers, T.; Barski, A.; Jamet, M. Epitaxial growth of Mn5Ge3/Ge(111) heterostructures for spin injection. Thin Solid Films?2008, 517, 191–196, doi:10.1016/j.tsf.2008.08.090.
[16]  Dedkov, Y.S.; Holder, M.; Mayer, G.; Fonin, M.; Preobrajenski, A.B. Spin-resolved photoemission of a ferromagnetic Mn5Ge3(0001) epilayer on Ge(111). J. Appl. Phys?2009, 105, 073909:1–073909:4.
[17]  Sangaletti, L.; Magnano, E.; Bondino, F.; Cepek, C.; Sepe, A.; Goldoni, A. Interface formation and growth of ferromagnetic thin layers in the Mn:Ge(111) system probed by dichroic soft x-ray spectroscopies. Phys. Rev?2007, 75, 153311:1–153311:4.
[18]  De Padova, P.; Mariot, J.-M.; Favre, L.; Berbezier, I.; Olivieri, B.; Perfetti, P.; Quaresima, C.; Ottaviani, C.; Taleb-Ibrahimi, A.; Le F?vre, P.; et al. Mn5Ge3 films grown on Ge(111)?c(2 × 8). Surf. Sci?2011, 605, 638–643, doi:10.1016/j.susc.2011.01.002.
[19]  Picozzi, S.; Ottaviano, L.; Passacantando, M.; Profeta, G.; Continenza, A.; Priolo, F.; Kim, M.; Freeman, A.J. X-ray absorption spectroscopy in Mnx Ge1?x diluted magnetic semiconductor: Experiment and theory. Appl. Phys. Lett?2005, 86, 062501:1–062501:3.
[20]  Gheorghe, N.G.; Husanu, M.A.; Lungu, G.A.; Costescu, R.M.; Macovei, D.; Teodorescu, C.M. Atomic structure and reactivity of ferromagnetic Fe deposited on Si(001). J. Mater. Sci?2012, 47, 1614–1620, doi:10.1007/s10853-011-5963-0.
[21]  Gheorghe, N.G.; Husanu, M.A.; Costescu, R.M.; Macovei, D.; Popescu, D.G.; Teodorescu, C.M. Reactivity, magnetism and local atomic structure in ferromagnetic Fe layers deposited on Si(001). Dig. J. Nanomater. Biostruct?2012, 7(1), 373–384.
[22]  Costescu, R.M.; Gheorghe, N.G.; Husanu, M.A.; Lungu, G.A.; Macovei, D.; Pintilie, I.; Teodorescu, C.M. Epitaxial ferromagnetic samarium and samarium silicide synthesized on Si(001). J. Mater. Sci?2012, 47, 7225–7234.
[23]  Gheorghe, N.G.; Lungu, G.A.; Husanu, M.A.; Costescu, R.M.; Macovei, D.; Teodorescu, C.M. Structure, reactivity, electronic configuration and magnetism of samarium atomic layers deposited on Si(001) by molecular beam epitaxy. Appl. Surf. Sci?2013, 267, 106–111.
[24]  Lungu, G.A.; Apostol, N.G.; Stoflea, L.E.; Costescu, R.M.; Popescu, D.G.; Teodorescu, C.M. Room temperature ferromagnetic, anisotropic, germanium rich FeGe(001) alloys. Materials?2013, 6, 612–625.
[25]  Rossmann, R.; Meyerheim, H.L.; Jahns, V.; Wever, J.; Moritz, W.; Wolf, D.; Dornisch, D.; Schulz, H. The Ge(001) (2 × 1) reconstruction: Asymmetric dimers and multilayer relaxation observed by grazing incidence X-ray diffraction. Surf. Sci?1992, 279, 199–209.
[26]  Husanu, M.A.; Popescu, D.G. Epitaxial growth of Au on Ge(001) surface: Photoelectron spectroscopy measurements and first-principles calculations. Thin Solid Films, 2014. in press.
[27]  Popescu, D.G.; Husanu, M.A. Au–Ge bonding on a uniformly Au-covered Ge(001) surface. Phys. Stat. Sol. RRL?2013, 7(1), 274–277.
[28]  Yamada, N.; Maeda, K.; Usami, Y.; Ohoyama, T. Magnetic properties of intermetallic compound Mn11Ge8. J. Phys. Soc. Jpn?1986, 55, 3721–3724.
[29]  Wang, Y.; Zou, J.; Zhao, Z.; Han, X.; Zhou, X.; Wang, K.L. Direct structural evidences of Mn11Ge8 and Mn5Ge2 clusters in Ge0.96Mn0.04 thin films. Appl. Phys. Lett?2008, 92, 101913:1–101913:3.
[30]  Wang, Y.; Xiu, F.X..; Wang., Y.; Hu, H.Y.; Li, D.; Kou, X.F.; Wang, K.L.; Jacob, A.P.; Zou, J. Effect of Mn concentration and growth temperature on nanostructures and magnetic properties of Ge1?x Mnx grown on Si. J. Cryst. Growth?2010, 312, 3034–3039.
[31]  Dung, D.D.; Mua, N.T.; Chung, H.V.; Cho, S. Novel Mn-doped Ge: From basis to application. J. Mater. Sci. Eng?2012, 2, 248–271.
[32]  Passacantando, M.; Ottaviano, L.; D’Orazio, F.; Lucari, F.; De Biase, M.; Impellizzeri, G.; Priolo, F. Growth of ferromagnetic nanoparticles in a diluted magnetic semiconductor obtained by Mn+ implantation on Ge single crystals. Phys. Rev?2006, 73, 195207:1–195207:5.
[33]  Ayoub, J.-P.; Favre, L.; Berbezier, I.; Ronda, A.; Moressi, L.; Pinto, N. Morphological and structural evolutions of diluted Ge1?x Mnx epitaxial films. Appl. Phys. Lett?2007, 91, 141920:1–141920:3.
[34]  Morresi, L.; Ayoub, J.P.; Pinto, N.; Ficcadenti, M.; Murri, R.; Ronda, A.; Berbezier, I.; D’Orazio, F. Structural, magnetic and electronic transport properties of Mnx Ge1?x/Ge(001) films grown by MBE at 350 degrees C. Surf. Sci?2007, 601, 2632–2635.
[35]  Ogawa, M.; Han, X.H.; Zhao, Z.M.; Wang, Y.; Wang, K.L.; Zou, J. Mn distribution behaviors and magnetic properties of GeMn films grown on Si(001) substrates. J. Cryst. Growth?2009, 311, 2147–2150.
[36]  Bihler, C.; Jaeger, C.; Vallaitis, T.; Gjukic, M.; Brandt, M.S.; Pippel, E.; Woltersdorf, J.; G?sele, U. Structural and magnetic properties of Mn5Ge3 clusters in a dilute magnetic germanium matrix. Appl. Phys. Lett?2006, 88, 112506:1–112506:3.
[37]  Wang, Y.; Zou, J.; Zhao, Z.M.; Han, X.H.; Zhou, X.Y.; Wang, K.L. Mn behavior in Ge0.96Mn0.04 magnetic thin films grown on Si. J. Appl. Phys?2008, 103, 066104:1–066104:3.
[38]  Biegger, E.; St?heli, L.; Fonin, M.; Rüdiger, U.; Dedkov, Y.S. Intrinsic ferromagnetism versus phase segregation in Mn-doped Ge. J. Appl. Phys?2007, 101, 103912:1–103912:5.
[39]  Li, H.L.; Wu, Y.H.; Guo, Z.B.; Luo, P.; Wang, S.J. Magnetic and electrical transport properties of Ge1?x Mnx thin films. J. Appl. Phys?2006, 100, 103908:1–103908:9.
[40]  Park, Y.D.; Wilson, A.; Hanbicki, A.T.; Mattson, J.E.; Ambrose, T.; Spanos, G.; Jonker, B.T. Magnetoresistance of Mn:Ge ferromagnetic nanoclusters in a diluted magnetic semiconductor. Appl. Phys. Lett?2001, 78, 2739–2741.
[41]  Niikura, R.; Nakatsuji, K.; Komori, F. Local atomic and electronic structure of Au-adsorbed Ge(001) surfaces: Scanning tunneling microscopy and x-ray photoemission spectroscopy. Phys. Rev?2011, 83, 035311:1–035311:6.
[42]  Carlisle, J.A.; Miller, T.; Chiang, T.-C. Atomic origins of surface core levels on Si(111)-(7 × 7) studied by site-dependent Ge substitution. Phys. Rev?1992, 45, 3811–3814.
[43]  Izquierdo, M.; Dávila, M.E.; Avila, J.; Ascolani, H.; Teodorescu, C.M.; Martin, M.G.; Franco, N.; Chrost, J.; Arranz, A.; Asensio, M.C. Epitaxy and magnetic properties of surfactant-mediated growth of bcc cobalt. Phys. Rev. Lett?2005, 94, 187601:1–187601:4.
[44]  Hüfner, S. Photoelectron Spectroscopy: Principles and Applications, 3rd ed. ed.; Springer: Berlin, Germany, 2003; p. 9.
[45]  Apostol, N.G.; Stoflea, L.E.; Lungu, G.A.; Chirila, C.; Trupina, L.; Negrea, R.F.; Ghica, C.; Pintilie, L.; Teodorescu, C.M. Charge transfer and band bending at Au/Pb(Zr,Ti)O3 interfaces investigated by photoelectron spectroscopy. Appl. Surf. Sci?2013, 273, 415–425.
[46]  Gheorghe, N.G.; Lungu, G.A.; Costescu, R.M.; Popescu, D.G.; Teodorescu, C.M. Enhanced contamination of Si(001) when analyzed with AES with respect to XPS. Optoel. Adv. Mater. Rapid Commun?2011, 5, 499–504.
[47]  Gheorghe, N.G.; Lungu, G.A.; Costescu, R.M.; Teodorescu, C.M. Significantly different contamination of atomically clean Si(001) when investigated by XPS and AES. Phys. Stat. Solidi?2011, 248, 1919–1924.
[48]  Apostol, N.G.; Stoflea, L.E.; Lungu, G.A.; Tache, C.A.; Pintilie, L.; Teodorescu, C.M. Band bending at free Pb(Zr,Ti)O3 surfaces analyzed by X-ray photoelectron spectroscopy. Mater. Sci. Eng?2013, 178, 1317–1322.
[49]  Apostol, N.G.; Stoflea, L.E.; Lungu, G.A.; Tanase, L.C.; Chirila, C.; Frunza, L.; Pintilie, L.; Teodorescu, C.M. Band bending in Au/Pb(Zr,Ti)O3 investigated by X-ray photoelectron spectroscopy: Dependence on the initial state of the film. Thin Solid Films?2013, 545, 13–21.
[50]  Lide, D.R. CRC Handbook of Chemistry and Physics, 75th ed. ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 12–113.
[51]  Goldberg, C. Acceptors produced in germanium by quenching from high temperatures. Phys. Rev?1952, 88, 920–924.
[52]  Luca, D.; Teodorescu, C.M.; Apetrei, R.; Macovei, D.; Mardare, D. Preparation and characterization of increased-efficiency photocatalytic TiO2?x Nx thin films. Thin Solid Films?2007, 515, 8605–8610.
[53]  Mardare, D.; Luca, D.; Teodorescu, C.M.; Macovei, D. On the hydrophilicity of nitrogen-doped TiO2 thin films. Surf. Sci?2007, 601, 4515–4520.
[54]  Zhang, H.M.; Hirvonen Grytzelius, J.; Johansson, L.S.O. Thin Mn germanide films studied by XPS, STM, and XMCD. Phys. Rev?2013, 88, 045311:1–045311:7.
[55]  Hirvonen Grytzelius, J.; Zhang, H.M.; Johansson, L.S.O. Mn5Ge3 film formation on Ge(111) c(2 × 8). Phys. Rev. B?2012, 86, 125313:1–125313:7.
[56]  Teodorescu, C.M.; Martin, M.G.; Franco, N.; Ascolani, H.; Chrost, J.; Avila, J.; Asensio, M.C. Epitaxial growth of bcc Co films on Sb-passivated GaAs(110) substrates. J. El. Spectrosc. Relat. Phenom, 1999, 101–103, 493–499.
[57]  Jenks, C.J.; Chang, S.-L.; Anderegg, J.W.; Thiel, P.A.; Lynch, D.W. Photoelectron spectra of an Al70Pd21Mn9 quasicrystal and the cubic alloy Al60Pd25Mn15. Phys. Rev?1996, 54, 6301–6306.
[58]  Myers, C.E.; Franzen, H.F.; Anderegg, J.W. X-ray photoelectron spectra and bonding in transition-metal phosphides. Inorg. Chem?1985, 24, 1822–1824.
[59]  Chang, S.-L.; Anderegg, J.W.; Thiel, P.A. Surface oxidation of an Al70Pd21Mn9 quasicrystal, characterized by X-ray photoelectron spectroscopy. J. Non-Cryst. Solids?1996, 195, 95–101.
[60]  Wagner, C.D.; Davis, L.E.; Zeller, M.V.; Taylor, J.A.; Raymond, R.M.; Gale, L.H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal?1981, 3, 211–225.
[61]  Dragoi, C.; Gheorghe, N.G.; Lungu, G.A.; Trupina, L.; Ibanescu, A.G.; Teodorescu, C.M. X-ray photoelectron spectroscopy of pulsed laser deposited Pb(Zr,Ti)O3 ? δ. Phys. Stat. Solidi?2012, 209, 1049–1052.
[62]  Sangaletti, L.; Drera, G.; Magnano, E.; Bondino, F.; Cepek, C.; Sepe, A.; Goldoni, A. Atomic approach to core-level spectroscopy of delocalized systems: Case of ferromagnetic metallic Mn5Ge3. Phys. Rev?2010, 81, 085204:1–085204:6.
[63]  Doniach, S.; Sunjic, M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. Solid State Phys?1970, 3, 285–291.
[64]  Arras, E.; Lan?on, F.; Slipukhina, I.; Prestat, é.; Rovezzi, M.; Tardif, S.; Titov, A.; Bayle-Guillemaud, P.; d’Acapito, F.; Barski, A.; et al. Interface-driven phase separation in multifunctional materials: The case of the ferromagnetic semiconductor GeMn. Phys. Rev. B?2012, 85, 115204:1–115204:10.
[65]  Morresi, L.; Ayoub, J.P.; Pinto, N.; Ficcadenti, M.; Murri, R.; Ronda, A.; Berbezier, I. Formation of Mn5Ge3 nanoclusters in highly diluted Mnx Ge1?x alloys. Mater. Sci. Semicond. Proc?2006, 9, 836–840.
[66]  Ottaviano, L.; Passacantando, M.; Picozzi, S.; Continenza, A.; Gunnella, R.; Verna, A.; Bihlmayer, G.; Impelizzeri, G.; Priolo, F. Phase separation and dilution in implanted Mnx Ge1?x alloys. Appl. Phys. Lett?2006, 88, 061907:1–061907:3.
[67]  De Padova, P.; Favre, L.; Berbezier, I.; Olivieri, B.; Generosi, A.; Paci, B.; Rossi Albertini, V.; Perfetti, P.; Quaresima, C.; Mariot, J.-M.; et al. Structural and magnetic properties of Mn5Ge3 nanoclusters dispersed in Mnx Ge1?x/Ge(001) 2 × 1 diluted magnetic semiconductors. Surf. Sci?2007, 601, 4370–4374.
[68]  Nistor, L.C.; Ghica, C.; Kuncser, V.; Pantelica, D.; Grob, J.-J.; Epurescu, M.; Dinescu, M. Microstructure-related magnetic properties in Co-implanted ZnO thin films. J. Phys. Appl. Phys?2013, 46, 065003:1–065003:10.
[69]  Bougeard, D.; Ahlers, S.; Trampert, A.; Sircar, N.; Abstreiter, G. Clustering in a precipitate-free GeMn magnetic semiconductor. Phys. Rev. Lett?2006, 97, 237202:1–237202:4.
[70]  Kuncser, V.; Keune, W.; von H?rsten, U.; Schinteie, G. Interlayer magnetic coupling in exchange bias and spin valve structures with Fe-Mn and Ir-Mn antiferromagnetic layers. J. Optoelectr. Adv. Mater?2010, 12, 1385–1393.
[71]  Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2009; p. 219.
[72]  Das Sarma, S.; Hwang, E.H.; Kaminski, A. Temperature-dependent magnetization in diluted magnetic semiconductors. Phys. Rev?2003, 67, 155201:1–155201:7.
[73]  Pinto, N.; Morresi, L.; Ficcadenti, M.; Murri, R.; D’Orazio, F.; Lucari, F.; Boarino, L.; Amato, G. Magnetic and electronic transport percolation in epitaxial Ge1?x Mnx films. Phys. Rev?2005, 72, 165203:1–165203:7.
[74]  Teodorescu, C.M.; Esteva, J.M.; Karnatak, R.C.; El Afif, A. An approximation of the Voigt I profile for the fitting of experimental x-ray absorption data. Nucl. Instrum. Meth?1994, 34, 141–147.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133