Lu 2O 3:Pr,Hf ceramics were investigated using mainly thermoluminescence (TL) technique. Their ability to efficiently store energy acquired upon irradiation with X-rays was proven. The best TL performance was achieved for compositions containing 0.025%–0.05% of Pr and about 0.1% of Hf. Further enhancement of TL efficiency was attained by increasing the temperature of sintering of the ceramics up to 1700 °C and applying reducing atmosphere of forming gas. It was also proven that fast cooling after the sintering at 1700 °C significantly enhanced the storage phosphor performance. TL glow curve contained three components peaking around 130, 250 and 350 °C. Among them, the one at 250 °C contributed the most to the total TL.
References
[1]
McKeever, S.W.S. Thermoluminescence of Solids, 1st ed ed.; Cambridge University Press: London, UK, 1985.
[2]
Chen, R.; McKeever, S.W.S. Theory of Thermoluminescence and Related Phenomena, 1st ed ed.; World Scientific, Asia: Singapore, Singapore, 1997.
[3]
Chen, R.; Pagonis, V. Thermally and Optically Stimulated Luminescence: A Simulation and Approach, 1st ed ed.; John Wiley and Sons: West Sussex, UK, 2011.
[4]
Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y. A New long phosphorescent phosphor with high brightness SrAl2O4:Eu2+,Dy3+. J. Eelectrochem. Soc?1996, 143, 2670–2673, doi:10.1149/1.1837067.
[5]
Yamamoto, H.; Matsuzawa, T. Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and SrAl2O4:Eu2+,Nd3+. J. Lumin?1997, 72–74, 287–289.
[6]
Kang, H.G.; Park, J.K.; Kim, J.M.; Kim, C.H.; Choi, S.C. Embodiment and luminescence properties of Sr3SiO5:Eu (yellow-orange phosphor) by co-doping lanthanide. Sol. St. Phen?2007, 124–126, 511–514.
[7]
H?ls?, J.; Kotlov, A.; Laamanen, T.; Lastusaari, M.; Malkam?ki, M. Proceedings of Excited States of Transition Elements and Workshop on Luminescence (ESTE2010), Wroclaw & Piechowice, Poland, 4–9 September, 2010.
[8]
Gong, Y.; Wang, Y.; Li, Y.; Xu, X.; Zeng, W. Fluorescence and phosphorescence properties of new long-lasting phosphor Ba4(Si3O8)2:Eu2+,Dy3+. Opt. Express?2011, 19, 4310–4315, doi:10.1364/OE.19.004310. 21369261
[9]
Li, Y.; Wang, Y.; Gong, Y.; Xu, X.; Zhou, M. Design, synthesis and characterization of an orange-yellow long persistent phosphor: Sr3Al2O5Cl2:Eu2+,Tm3+. Opt. Express?2010, 18, 24853–24858, doi:10.1364/OE.18.024853. 21164830
[10]
Nakamura, T.; Kaiya, K.; Takahashi, N.; Matsuzawa, T.; Matsuzawa, T.; Rowlands, C.C.; Beltran-Lopez, V.; Smith, G.M.; Riedi, P.C. High frequency EPR of europium(II)-doped strontium aluminate phosphors. J. Mater. Chem?2000, 10, 2566–2569, doi:10.1039/b004061o.
[11]
Aitasalo, T.; Deren, P.; H?ls?, J.; Jungner, H.; Krupa, J.-C.; Lastusaari, M.; Legendziewicz, J.; Niittykoski, J.; Strek, W. Persistent luminescence phenomena in materials doped with rare earth ions. J. Solid State Chem?2003, 171, 114–122, doi:10.1016/S0022-4596(02)00194-9.
[12]
Miyamoto, Y.; Kato, H.; Honna, Y.; Yamamoto, H.; Ohmi, K. An orange-emitting, long-persistent phosphor, Ca2Si5N8:Eu2+,Tm3+. J. Electrochem. Soc?2009, (156), J235–J241.
[13]
Bos, A.J.J.; Dorenbos, P.; Bessière, A.; Viana, B. Lanthanide energy levels in YPO4. Radiat. Meas?2008, 43, 222–226.
[14]
Bos, A.J.J.; Dorenbos, P.; Bessière, A.; Lecointre, A.; Bedu, M.; Bettinelli, M.; Piccinelli, F. Study of TL glow curves of YPO4 double doped with lanthanide ions. Radiat. Meas?2011, 46, 1410–1416.
[15]
Krumpel, A.H.; Bos, A.J.J.; Bessière, A.; Van der Kolk, E.; Dorenbos, P. Controlled electron and hole trapping in YPO4:Ce3+,Ln3+ and LuPO4:Ce3+,Ln3+ (Ln = Sm, Dy, Ho, Er, Tm). Phys. Review B?2009, 80, doi:10.1103/PhysRevB.80.085103.
[16]
Lecointre, A.; Bessière, A.; Bos, A.J.J.; Dorenbos, P.; Viana, B.; Jacquart, S. Designing a red persistent luminescence phosphor: The example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy). J. Phys. Chem. C?2011, 115, 4217–4227.
[17]
Dorenbos, P.; Bos, A.J.J. Lanthanide level location and related thermoluminescence phenomena. Radiat. Meas?2008, 43, 139–145.
[18]
Dorenbos, P.; Shalapska, T.; Stryganyuk, G.; Getkin, A.; Voloshinovskii, A. Spectroscopy and energy level location of the trivalent lanthanides on LiYP4O12. J. Lumin?2011, 131, 633–639.
[19]
Vandenbroucke, D.A.N.; Leblans, P.J.R. CR Mammography: Image Quality Measurement and Model Calculation for Needle vs. Powder Imaging Plate. In Digital Mammography, Proceedings of the 10th International Workshop, IWDM2010, Girona, Catalonia, Spain, 16–18 June, 2010; Marti, J., Oliver, A., Freixenet, J., Marti, R., Eds.; Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2010.
[20]
Leblans, P.; Vandenbroucke, D.; Willems, P. Storage phosphor for medical imaging. Materials?2011, 4, 1034–1086.
[21]
Nanto, H.; Takei, Y.; Nishimura, A.; Nakano, Y.; Shouji, T.; Yanagita, T.; Kasai, S. Novel X-ray Image Sensor Using CsBr:Eu Phosphor for Computed Radiography. In Medical Imaging 2006: Physics of Medical Imaging, Proceedings of International Society for Optics and Photonics, SPIE 2006, San Diego, CA, USA, 11 February 2006.
[22]
Zeng, X.S.; Zeng, J.X.; Tan, G.X.; Mai, W.J. CaSO4:Dy and LiF:Mg, Cu, P thermoluminescent dosimeters for environmental monitoring in ambient areas of a nuclear power plant. Health Phys?1996, 70, 367–371. 8609029
[23]
Olko, P.; Budzanowski, M.; Bilski, P.; Milo?evi?, S.; Obryk, B.; Ochab, E.; Simi?, M.; Stegnar, P.; Waligórski, M.; ?ui?, Z. Application of MCP-N (LiF: Mg, Cu, P) TL detectors in monitoring environmental radiation. Nucl. Tech. Radiat. Prot?2004, 1, 20–25.
[24]
National Institute of Standards and Technology (NIST) Home Page. Available online: http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html (accessed 18 December 2013).
[25]
Riesen, H.; Liu, Z.Q. Optical Storage Phosphors and Materials for Ionizing Radiation. In Ionizing Radiation Research; Nenoi, M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 625–648.
[26]
von Seggern, H. Photostimulable X-Ray storage phosphors: A review of present understanding. Braz. J Phys?1999, 29, 254–268.
Wiatrowska, A.; Zych, E. Traps formation and characterization in long-term energy storing Lu2O3:Pr,Hf luminescent ceramics. J. Phys. Chem. C?2013, 117, 11449–11458.
[29]
Kulesza, D.; Wiatrowska, A.; Trojan-Piegza, J.; Felbeck, T.; Geduhn, R.; Motzek, P.; Zych, E.; Kynast, U. The bright side of defects: Chemistry and physics of persistent and storage phosphors. J. Lumin?2013, 133, 51–56.
[30]
Lakshmanan, A. The Role of Sintering in the Synthesis of Luminescence Phosphors. In Sintering of Ceramics—New Emerging Techniques; Lakshmanan, A., Ed.; InTech: Rijeka, Croatia, 2012; pp. 323–356.
[31]
Van den Eeckhout, K.; Bos, A.J.J.; Poelman, D.; Smet, P.F. Revealing trap depth distributions in persistent phosphors. Phys. Review B?2013, 87, 045126:1–045126:11.
[32]
Klug, P.; Alexander, L.E. X-ray Diffraction Procedure: For Polycrystalline and Amorphous Materials, 2nd ed ed.; Wiley: New York, NY, USA, 1974.
[33]
Ainsworth, R.A.; Skelton, E.P. Behavior of Defects at High Temperature; Mechanical Engineering Publications: London, UK, 1993.
[34]
Tilley, R.J.D. Defects in Solids; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2008.
[35]
Laamanen, T. Defects in Persistent Luminescence Materials. Ph.D. Thesis, University of Turku, Turku, Finland, 1 August 2011.
[36]
Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R. Introduction to Ceramics, 2nd ed ed.; Willy-Interscience Publications, John Wiley & Sons: New York, NY, USA, 1976.
[37]
Pechini, M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same Form a Capacitor. U.S. Patent 3,330,697, 11, July, 1967.
[38]
Patil, K.C.; Aruna, S.T.; Ekambaram, S. Combustion synthesis. Curr. Opin. Solid State Mater. Sci?1997, 2, 158–165.