This research describes the preparation and sensor applications of multifunctional monodisperse, Fe 3O 4 nanoparticles-embedded poly(styrene)/poly(thiophene) (Fe 3O 4-PSt/PTh), core/shell nanoparticles. Monodisperse Fe 3O 4-PSt/PTh nanoparticles were prepared by free-radical combination (mini-emulsion/emulsion) polymerization for Fe 3O 4-PSt core and oxidative seeded emulsion polymerization for PTh shell in the presence of FeCl 3/H 2O 2 as a redox catalyst, respectively. For applicability of Fe 3O 4-PSt/PTh as sensors, Fe 3O 4-PSt/PTh-immobilized poly(ethylene glycol) (PEG)-based hydrogels were fabricated by photolithography. The hydrogel patterns showed a good sensing performance under different H 2O 2 concentrations. They also showed a quenching sensitivity of 1 μg/mL for the Pd 2+ metal ion within 1 min. The hydrogel micropatterns not only provide a fast water uptake property but also suggest the feasibility of both H 2O 2 and Pd 2+ detection.
References
[1]
Galian, R.E.; de la Guardia, M. The use of quantum dots in organic chemistry. TrAC Trends Anal. Chem?2009, 28, 279–291.
[2]
Dubus, S.; Gravel, J.-F.; Le Drogoff, B.; Nobert, P.; Veres, T.; Boudreau, D. PCR-free DNA detection using a magnetic bead-supported polymeric transducer and microelectromagnetic traps. Anal. Chem?2006, 78, 4457–4464.
[3]
Liao, F.; Subramanian, V. Experimental and theoretical studies for the optimization of polythiophene gas sensor array. ECS Trans?2008, 16, 529–538.
[4]
Singhal, R.; Chaubey, A.; Kaneto, K.; Takashima, W.; Malhotra, B.D. Poly-3-hexyl thiophene Langmuir-Blodgett films for application to glucose biosensor. Biotechnol. Bioeng?2004, 85, 277–282.
[5]
McCullough, R.D.; Ewbank, P.C.; Loewe, R.S. Self-assembly and disassembly of regioregular, water soluble polythiophenes: Chemoselective ionchromatic sensing in water. J. Am. Chem. Soc?1997, 119, 633–634.
Richter, T.V.; Buehler, C.; Ludwigs, S. Water- and ionic-liquid-soluble branched polythiophenes bearing anionic and cationic moieties. J. Am. Chem. Soc?2012, 134, 43–46.
[8]
Lee, S.J.; Lee, J.M.; Cho, H.-Z.; Koh, W.G.; Cheong, I.W.; Kim, J.H. Poly(thiophene) nanoparticles prepared by Fe3+-catalyzed oxidative polymerization: Size-dependent effect on photoluminescence property. Macromolecules?2010, 43, 2484–2489.
[9]
Lee, S.M.; Lee, S.J.; Kim, J.H.; Cheong, I.W. Synthesis of polystyrene/polythiophene core/shell nanoparticles by dual initiation. Polymer?2011, 52, 4227–4234.
[10]
Jung, Y.J.; Lee, S.J.; Choi, S.W.; Kim, J.H. Fabrication of monodisperse luminescent nanoparticles with core/shell poly(styrene/thiophene) structure. J. Polym. Sci. Part Polym. Chem?2008, 46, 5968–5975.
Kim, D.-N.; Lee, W.; Koh, W.-G. Micropatterning of proteins on the surface of three-dimensional poly(ethylene glycol) hydrogel microstructures. Anal. Chim. Acta?2008, 609, 59–65.
[13]
Lee, W.; Choi, D.; Kim, J.-H.; Koh, W.-G. Suspension arrays of hydrogel microparticles prepared by photopatterning for multiplexed protein-based bioassays. Biomed. Microdevices?2008, 10, 813–822.
[14]
Jang, E.; Koh, W.-G. Multiplexed enzyme-based bioassay within microfluidic devices using shape-coded hydrogel microparticles. Sens. Actuators Chem?2010, 143, 681–688.
Koh, W.-G.; Itle, L.J.; Pishko, M.V. Molding of hydrogel microstructures to create multiphenotype cell microarrays. Anal. Chem?2003, 75, 5783–5789.
[17]
Koh, W.-G.; Pishko, M. Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Anal. Bioanal. Chem?2006, 385, 1389–1397.
[18]
Lee, H.J.; Park, Y.H.; Koh, W.-G. Fabrication of nanofiber microarchitectures localized within hydrogel microparticles and their application to protein delivery and cell encapsulation. Adv. Funct. Mater?2013, 23, 591–597.
[19]
Park, S.; Lee, Y.; Kim, D.N.; Park, S.; Jang, E.; Koh, W.-G. Entrapment of enzyme-linked magnetic nanoparticles within poly(ethylene glycol) hydrogel microparticles prepared by photopatterning. React. Funct. Polym?2009, 69, 293–299.
[20]
Jang, E.; Park, S.; Park, S.; Lee, Y.; Kim, D.-N.; Kim, B.; Koh, W.-G. Fabrication of poly(ethylene glycol)-based hydrogels entrapping enzyme-immobilized silica nanoparticles. Polym. Adv. Technol?2010, 21, 476–482.
[21]
Jang, E.; Kim, S.; Koh, W.-G. Microfluidic bioassay system based on microarrays of hydrogel sensing elements entrapping quantum dot–enzyme conjugates. Biosens. Bioelectron?2012, 31, 529–536.
[22]
Cruise, G.M.; Scharp, D.S.; Hubbell, J.A. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials?1998, 19, 1287–1294.
[23]
Xu, H.; Cui, L.; Tong, N.; Gu, H. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. J. Am. Chem. Soc?2006, 128, 15582–15583.
[24]
Swami, A.; Jadhav, A.; Kumar, A.; Adyanthaya, S.D.; Sastry, M. Water-dispersible nanoparticles via interdigitation of sodium dodecylsulphate molecules in octadecylamine-capped gold nanoparticles at a liquid-liquid interface. Proc. Indian Acad. Sci. Chem. Sci?2003, 115, 679–687.
[25]
Gill, R.; Bahshi, L.; Freeman, R.; Willner, I. Optical detection of glucose and acetylcholine esterase inhibitors by H2O2-sensitive CdSe/ZnS quantum dots. Angew. Chem?2008, 120, 1700–1703.
[26]
Ochiai, B.; Ogihara, T.; Mashiko, M.; Endo, T. Synthesis of rare-metal absorbing polymer by three-component polyaddition through combination of chemo-selective nucleophilic and radical additions. J. Am. Chem. Soc?2009, 131, 1636–1637.
[27]
Nagai, D.; Imazeki, T.; Morinaga, H.; Nakabayashi, H. Synthesis of a rare-metal adsorbing polymer by three-component polyaddition of diamines, carbon disulfide, and diacrylates in an aqueous/organic biphasic medium. J. Polym. Sci. Polym. Chem?2010, 48, 5968–5973.
[28]
Nagai, D.; Yoshida, M.; Kishi, T.; Morinaga, H.; Hara, Y.; Mori, M.; Kawakami, S.; Inoue, K. A facile and high-recovery material for rare-metals based on a water-soluble polyallylamine with side-chain thiourea groups. Chem. Commun?2013, 49, 6852–6854.