A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved.
References
[1]
Moropoulou, A.; Bakolas, A.; Bisbikou, A. Investigation of the technology of historic mortars. J. Cult. Herit?2000, 1, 45–58.
[2]
Sabbioni, C.; Zappia, G.; Riontino, C.; Blanco-Varela, M.T.; Aguilerac, J.; Puertasc, F.; Van Balend, K.; Toumbakarid, E.E. Atmospheric deterioration of ancient and modern hydraulic mortars. Atmospheric Environ?2001, 35, 539–548.
[3]
Johannesson, B.; Utgenannt, P. Microstructural changes caused by carbonation of cement mortar. Cem. Concr. Res?, 2001.
[4]
Rabehi, M.; Mezghiche, B.; Guettala, S. Correlation between initial absorption of the cover concrete, the compressive strength and carbonation depth. Constr. Build. Mater?2013, 45, 123–129.
[5]
Thiery, M.; Villain, G.; Dangla, P.; Platret, G. Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics. Cem. Concr. Res?2007, 37, 1047–1058.
[6]
Meier, S.A.; Peter, M.A.; Muntean, A.; B?hm, M. Dynamics of the internal reaction layer arising during carbonation of concrete. Chem. Eng. Sci?2007, 62, 1125–1137.
[7]
Ati?, C.D. Accelerated carbonation and testing of concrete made with fly ash. Constr. Build. Mater?2003, 17, 147–152.
[8]
Marques, P.F.; Chastre, C.; Nunes, ?. Carbonation service life modeling of RC structures for concrete with Portland and blended cements. Cem. Concr. Compos?2013, 37, 171–184.
[9]
Muntean, A.; B?hm, M. A moving-boundary problem for concrete carbonation: Global existence and uniqueness of weak solutions. J. Math. Anal. Appl?2009, 350, 234–251.
[10]
Bary, B.; Sellier, A. Coupled moisture—Carbon dioxide–calcium transfer model for carbonation of concrete. Cem. Concr. Res?2004, 34, 1859–1872.
[11]
Villain, G.; Thiery, M.; Platret, G. Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cem. Concr. Res?2007, 37, 1182–1192.
[12]
Fabbri, A.; Corvisier, J.; Schubnel, A.; Bruneta, F.; Gofféa, B.; Rimmeleb, G.; Barlet-Gouédard, V. Effect of carbonation on the hydro-mechanical properties of Portland cements. Cem. Concr. Res?2009, 39, 1156–1163.
[13]
Duong, V.B.; Sahamitmongkol, R.; Tangtermsirikul, S. Effect of leaching on carbonation resistance and steel corrosion of cement-based materials. Constr. Build. Mater?2013, 40, 1066–1075.
[14]
Huet, B.; L’Hostis, V.; Miserque, F.; Idrissi, H. Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution. Electrochim. Acta?2005, 51, 172–180.
[15]
Valcarce, M.B.; Vázquez, M. Carbon steel passivity examined in solutions with a low degree of carbonation: The effect of chloride and nitrite ions. Mater. Chem. Phys?2009, 115, 313–321.
[16]
Metalssi, O.O.; A?t-Mokhtar, A.; Turcry, P.; Ruot, B. Consequences of carbonation on microstructure and drying shrinkage of a mortar with cellulose ether. Constr. Build. Mater?2012, 34, 218–225.
[17]
Ngala, V.T.; Page, C.L. Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cem. Concr. Res?1997, 27, 995–1007.
[18]
Rozière, E.; Loukili, A.; Cussigh, F. A performance based approach for durability of concrete exposed to carbonation. Constr. Build. Mater?2009, 23, 190–199.
[19]
Isgor, O.B.; Razaqpur, A.G. Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures. Cem. Concr. Compos?2002, 26, 57–73.
[20]
Steffens, A.; Dinkler, D.; Ahrens, H. Modeling carbonation for corrosion risk prediction of concrete structure. Cem. Concr. Res?2002, 32, 935–941.
[21]
Jiang, L.; Lin, B.; Cai, Y. A model for predicting carbonation of high-volume fly ash concrete. Cem. Concr. Res?2000, 30, 699–702.
[22]
Bertos, M.F.; Simons, S.J.R.; Hills, C.D.; Carey, P.J. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2 (review article). J. Hazard. Mater?2004, 112, 193–205.
[23]
Lo, Y.; Lee, H.M. Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy. Build. Environ?2002, 37, 507–514.
[24]
Song, G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cem. Concr. Res?2000, 30, 1723–1730.
[25]
McCarter, W.J.; Garvin, S.; Bouzid, N. Impedance measurements on cement paste. J. Mater. Sci. Lett?1998, 7(1), 1056–1057.
[26]
McCarter, W.J.; Brousseau, R. The A.C. response of hardened cement paste. Cem. Concr. Res?1990, 20, 891–900.
[27]
Gu, P.; Xie, P.; Beaudoin, J.J.; Brousseau, R. A.C. impedance spectroscopy (II): Microstructural characterization of hydrating cement-silicafume systems. Cem. Concr. Res?1993, 23, 157–168.
[28]
Brantervik, K.; Niklasson, G.A. Circuit models for cement based materials obtained form impedance spectroscopy. Cem. Concr. Res?1991, 21, 496–508.
[29]
An, X.P.; Shi, C.J.; He, F.; Wang, D. AC impedance characteristics of ternary cementitious materials. J. Chin. Ceram. Soc?2012, 40, 1059–1066.
[30]
Ye, C.-Q.; Hu, R.-G.; Dong, S.-G.; Zhang, X.-J.; Hou, R.-Q.; Du, R.-G.; Lin, C.-J.; Pan, J.-S. EIS analysis on chloride-induced corrosion behavior of reinforcement steel in simulated carbonated concrete pore solutions. J. Electro Anal. Chem?2013, 688, 275–281.
[31]
Chinese National Standards. Standard for Test Methods of Long-term Performance and Durability of Ordinary Concrete; GBJ820-8527; Ministry of Housing and Urban-Rural Development: Beijing, China, 2010.
[32]
Macdonald, J.R. Impedance Spectroscopy Theory, Experiment, and Applications; John Wiley & Sons, Inc: Hoboken, NJ, USA; Volume 2005, pp. 306–308.
[33]
Chen, X.D.; Wu, S.X. Influence of water-to-cement ratio and curing period on pore structure of cement mortar. Constr. Build. Mater?2013, 38, 804–812.
[34]
Diamond, S. A critical comparison of mercury porosimetry and capillary condensation pore size distributions of Portland cement pastes. Cem. Concr. Res?1971, 1, 531–545.
[35]
Xie, P.; Gu, P.; Xu, Z.; Beaudoin, J.J. A rationalized A.C. impedance model for microstructural characterization of hydrating cement systems. Cem. Concr. Res?1993, 23, 359–367.
[36]
Gu, P.; Xie, P.; Beaudion, J.J. Microstructural characterization of the transition zone in cement systems by mean of A.C. impedance spectroscopy. Cem. Concr. Res?1993, 23, 581–591.
[37]
Snydera, K.A.; Fenga, X.; Keenc, B.D.; Masonb, T.O. Estimating the electrical conductivity of cement paste pore solutions from OH?, K+ and Na+ concentrations. Cem. Concr. Res?2003, 33, 793–798.
[38]
Arandigoyen, M.; Bicer-Simsir, B.; Alvarez, J.I.; Langeb, D.A. Variation of microstructure with carbonation in lime and blended pastes. Appl. Surf. Sci?2006, 252, 7562–7571.
[39]
Montemor, M.F.; Cunha, M.P.; Ferreira, M.G.; Sim?es, A.M. Corrosion behaviour of rebars in fly ash mortar exposed to carbon dioxide and chlorides. Cem. Concr. Compos?2002, 24, 45–53.
[40]
Zhang, X.; Zhou, X.; Zhou, H.; Gaoa, K.; Wang, Z. Studies on forecasting of carbonation depth of slag high performance concrete considering gas permeability. Appl. Clay Sci?2013, 79, 36–40.
[41]
Sisomphon, K.; Franke, L. Carbonation rates of concretes containing high volume of pozzolanic materials. Cem. Concr. Res?2007, 37, 1647–1653.
[42]
Ji, Y.S. Performance and Prediction of Reinforced Concrete in Full Service Life Due to Corrosion Damage; China Railway Publishing House: Beijing, China, 2011; pp. 49–53.
[43]
Niu, D.T.; Dong, Z.P.; Pu, J.X. Random model of predicting the carbonated concrete depth. Ind. Constr?1999, 29, 41–45.
[44]
Dhir, R.K.; Hewlett, P.C.; Chan, Y.N. Near surface characteristics of concrete: Prediction of carbonation resistance. Mag. Concr. Res?1989, 41, 137–143.
[45]
Yoon, I.; ?opuro?lu, O.; Park, K. Effect of global climatic change on carbonation progress of concrete. Atmospheric Environ?2007, 41, 7274–7285.