The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.
References
[1]
Gimbel, R.; Panglisch, S.; Loi-Bruegger, A.; Hobby, R.; Lerch, A.; Strugholtz, S. New Approaches in Particle Separation with UF/MF Membranes. Proceedings of the IWA International Conference on Particle Separation, Toulouse, France, 9–11 July 2007.
[2]
Bowen, W.R.; Jenner, F. Theoretical descriptions of membrane filtration of colloids and fine particles: An assessment and review. Adv. Colloid Interface Sci. 1995, 56, 141–200.
[3]
Charcosset, C. Principles on Membrane and Membrane Processes. In Membrane Processes in Biotechnologies and Pharmaceutics; Elsevier: Amsterdam, The Netherlands, 2012; pp. pp. 1–41.
[4]
Broeckmann, A.; Busch, J.; Wintgens, T.; Marquardt, W. Modeling of pore blocking and cake layer formation in membrane filtration for wastewater treatment. Desalination 2006, 189, 97–109.
[5]
Foley, G.; Malone, D.M.; MacLoughlin, F. Modelling the effects of particle polydispersity in crossflow filtration. J. Membr. Sci. 1995, 99, 77–88.
[6]
Lee, K.J.; Wu, R.M. Simulation of resistance of cross-flow microfiltration and force analysis on membrane surface. Desalination 2008, 233, 239–246.
[7]
Fu, L.F.; Dempsey, B.A. Modeling the effect of particle size and charge on the structure of the filter cake in ultrafiltration. J. Membr. Sci. 1998, 149, 221–240.
[8]
Ghidossi, R.; Veyret, D.; Moulin, P. Computational fluid dynamics applied to membranes: State of the art and opportunities. Chem. Eng. Process. Process Intensif. 2006, 45, 437–454.
[9]
Rahimi, M.; Madaeni, S.S.; Abbasi, K. CFD modeling of permeate flux in cross-flow microfiltration membrane. J. Membr. Sci. 2005, 255, 23–31.
[10]
Bacchin, P.; Espinasse, B.; Bessiere, Y.; Fletcher, D.F.; Aimar, P. Numerical simulation of colloidal dispersion filtration: Description of critical flux and comparison with experimental results. Desalination 2006, 192, 74–81.
[11]
Hwang, K.; Wang, Y. Numerical simulation of particles deposition in cross-flow microfiltration of binary particles. Tamkang J. Sci. Eng. 2001, 2, 119–125.
[12]
Damak, K.; Ayadi, A.; Zeghmati, B.; Schmitz, P. A new Navier-Stokes and Darcy's law combined model for fluid flow in crossflow filtration tubular membranes. Desalination 2004, 161, 67–77.
[13]
Pak, A.; Mohammadi, T.; Hosseinalipour, S.M.; Allahdini, V. CFD modeling of porous membranes. Desalination 2008, 222, 482–488.
[14]
Rosén, C.; Tr?gárdh, C. Computer simulations of mass transfer in the concentration boundary layer over ultrafiltration membranes. J. Membr. Sci. 1993, 85, 139–156.
[15]
Nassehi, V. Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration. Chem. Eng. Sci. 1998, 53, 1253–1265.
[16]
Marcos, B.; Moresoli, C.; Skorepova, J.; Vaughan, B. CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. J. Membr. Sci. 2009, 337, 136–144.
[17]
Hillis, P.; Padley, M.B.; Powell, N.I.; Gallagher, P.M. Effects of backwash conditions on out-to-in membrane microfiltration. Desalination 1998, 118, 197–204.
[18]
Qaisrani, T.M.; Samhaber, W.M. Impact of gas bubbling and backflushing on fouling control and membrane cleaning. Desalination 2011, 266, 154–161.
[19]
Remize, P.J.; Guigui, C.; Cabassud, C. Evaluation of backwash efficiency, definition of remaining fouling and characterisation of its contribution in irreversible fouling: Case of drinking water production by air-assisted ultra-filtration. J. Membr. Sci. 2010, 355, 104–111.
[20]
Serra, C.; Durand-Bourlier, L.; Clifton, M.J.; Moulin, P.; Rouch, J.C.; Aptel, P. Use of air sparging to improve backwash efficiency in hollow-fiber modules. J. Membr. Sci. 1999, 161, 95–113.
[21]
Van de Ven, W.J.C.; Puent, I.G.M.; Zwijnenburg, A.; Kemperman, A.J.B.; van der Meer, W.G.J.; Wessling, M. Hollow fiber ultrafiltration: The concept of partial backwashing. J. Membr. Sci. 2008, 320, 319–324.
[22]
Smith, P.J.; Vigneswaran, S.; Ngo, H.H.; Ben-Aim, R.; Nguyen, H. Design of a generic control system for optimising back flush durations in a submerged membrane hybrid reactor. J. Membr. Sci. 2005, 255, 99–106.
[23]
Serra, C.; Clifton, M.J.; Moulin, P.; Rouch, J.C.; Aptel, P. Dead-end ultrafiltration in hollow fiber modules: Module design and process simulation. J. Membr. Sci. 1998, 145, 159–172.
[24]
Rusche, H. Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions. Ph.D. Thesis, Imperial College London, London, UK, December 2002.
[25]
Schiller, L.; Naumann, A.Z. Ueber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Ver. Deut. Ing. 1933, 77, 318–320.
[26]
Auton, T.R. The lift force on a spherical body in a rotational flow. J. Fluid Mech. 1987, 183, 199–218.