全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Membranes  2013 

Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst

DOI: 10.3390/membranes3020069

Keywords: catalytic propane dehydrogenation, membrane reactor, Two Zone Fluidized Bed Reactor, Pd-Ag membrane

Full-Text   Cite this paper   Add to My Lib

Abstract:

Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl 2O 4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol ?1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors.

References

[1]  Cavani, F.; Ballarini, N.; Cericola, A. Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catal. Today 2007, 127, 113–131.
[2]  Corma, A.; Melo, F.V.; Sauvanaud, L.; Ortega, F. Light cracked naphtha processing: Controlling chemistry for maximum propylene production. Catal. Today 2005, 107–108, 699–706.
[3]  Das, D.; Veziroglu, T.N. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrog. Energy 2011, 26, 13–28.
[4]  Barias, O.; Holmen, A.; Blekkan, E. Propane dehydrogenation over supported Pt and Pt-Sn catalysts: Catalyst preparation, characterization, and activity measurements. J. Catal. 1996, 158, 1–12, doi:10.1006/jcat.1996.0001.
[5]  Kumar, M.S.; Chen, D.; Holmen, A.; Walmsley, J.C. Dehydrogenation of propane over Pt-SBA-15 and Pt–Sn–SBA-15: Effect of Sn on the dispersion of Pt and catalytic behavior. Catal. Today 2009, 142, 17–23.
[6]  Gascón, J.; Téllez, C.; Herguido, J.; Menéndez, M. Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: Transient kinetic modeling of propene and coke formation. Appl. Catal. A Gen. 2003, 248, 105–116, doi:10.1016/S0926-860X(03)00128-5.
[7]  Derossi, S.; Ferraris, G.; Fremiotti, S.; Garrone, E.; Ghiotti, G.; Campa, M.C.; Indovina, V. Propane dehydrogenation on chromia/silica and chromia/alumina catalysts. J. Catal. 1994, 148, 36–46.
[8]  Gascón, J.; Téllez, C.; Herguido, J.; Menéndez, M. A Two-Zone Fluidized Bed Reactor for catalytic propane dehydrogenation. Chem. Eng. J. 2005, 106, 91–96, doi:10.1016/j.cej.2004.11.005.
[9]  Li, Q.; Sui, Z.; Zhou, X.; Chen, D. Kinetics of propane dehydrogenation over Pt–Sn/Al2O3 catalyst. Appl. Catal. A Gen. 2011, 398, 18–26, doi:10.1016/j.apcata.2011.01.039.
[10]  Lobera, M.P.; Téllez, C.; Herguido, J.; Menéndez, M. Transient kinetic modelling of propane dehydrogenation over a Pt–Sn–K/Al2O3 catalyst. Appl. Catal. A Gen. 2008, 349, 156–164, doi:10.1016/j.apcata.2008.07.025.
[11]  Larsson, M.; Hultén, M.; Blekkan, E.A.; Andersson, B. The effect of reaction conditions and time on stream on the coke formed during propane dehydrogenation. J. Catal. 1996, 164, 44–53.
[12]  Barias, O.A.; Holmen, A.; Blekkan, E.A. Propane dehydrogenation over supported platinum catalysts: Effect of tin as a promoter. Catal. Today 1995, 24, 361–364.
[13]  Jablonski, E.L.; Castro, A.A.; Scelza, O.A.; de Miguel, S.R. Effect of Ga addition to Pt/Al2O3 on the activity, selectivity and deactivation in the propane dehydrogenation. Appl. Catal. A Gen. 1999, 183, 189–198, doi:10.1016/S0926-860X(99)00058-7.
[14]  Yu, C.; Ge, Q.; Xu, H.; Li, W. Effects of Ce addition on the Pt-Sn/γ-Al2O3 catalyst for propane dehydrogenation to propylene. Appl. Catal. A Gen. 2006, 315, 58–67.
[15]  Zhang, Y.; Zhou, Y.; Liu, H.; Wang, Y.; Xu, Y.; Wu, P. Effect of La addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation. Appl. Catal. A Gen. 2007, 333, 202–210, doi:10.1016/j.apcata.2007.07.049.
[16]  Nawaz, Z.; Tang, X.; Zhang, Q.; Wang, D.; Fei, W. SAPO-34 supported Pt-Sn-based novel catalyst for propane dehydrogenation to propylene. Catal. Comm. 2009, 10, 1925–1930, doi:10.1016/j.catcom.2009.07.008.
[17]  Medrano, J.A.; Julián, I.; García-García, F.; Li, K.; Herguido, J.; Menéndez, M. Two-Zone Fluidized Bed Reactor (TZFBR) with palladium membrane for catalytic propane dehydrogenation: Experimental performance assessment. Ind. Eng. Chem. Res. 2013, 52, 3723–3731.
[18]  Gimeno, M.P.; Wu, Z.T.; Soler, J.; Herguido, J.; Li, K.; Menéndez, M. Combination of a Two-Zone Fluidized Bed Reactor with a Pd hollow fibre membrane for catalytic alkane dehydrogenation. Chem. Eng. J. 2009, 155, 298–303, doi:10.1016/j.cej.2009.06.037.
[19]  Herguido, J.; Menéndez, M.; Santamaría, J. On the use of fluidized bed catalytic reactors where reduction and oxidation zones are present simultaneously. Catal. Today 2005, 100, 181–189.
[20]  Julián, I.; Gallucci, G.; van Sint Annaland, M.; Herguido, J.; Menéndez, M. Coupled PIV/DIA for fluid dynamics studies on a Two-Section Two-Zone Fluidized Bed Reactor. Chem. Eng. J 2012, 207–208, 122–132.
[21]  Lobera, M.P.; Tellez, C.; Herguido, J.; Menéndez, M. Pt-Sn/MgAl2O4 as n-Butane Dehydrogenation Catalyst in a Two-Zone Fluidized-Bed Reactor. Ind. Eng. Chem. Res. 2009, 48, 6573–6578, doi:10.1021/ie900381p.
[22]  Gascón, J.; Téllez, C.; Herguido, J.; Menéndez, M. Fluidized bed reactors with two-zones for maleic anhydride production: Different configurations and effect of scale. Ind. Eng. Chem. Res. 2005, 44, 8945–8951, doi:10.1021/ie050638p.
[23]  Shu, J.; Grandjean, B.P.A.; Vanneste, A.; Kaliaguine, S. Catalytic palladium-based membrane reactors—A review. Can. J. Chem. Eng. 1991, 69, 1036–1060, doi:10.1002/cjce.5450690503.
[24]  Paturzo, L.; Basile, A.; Drioli, E. High temperature membrane reactors and integrated membrane operations. Rev. Chem. Eng. 2002, 18, 511–551.
[25]  Armor, J.N. Applications of catalytic inorganic membrane reactors to refinery products. J. Membr. Sci. 1998, 147, 217–233, doi:10.1016/S0376-7388(98)00124-0.
[26]  Gallucci, F.; Fernandez, E.; Corengia, P.; van Sint Annaland, M. Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 2013, 92, 40–66, doi:10.1016/j.ces.2013.01.008.
[27]  Coronas, J.; Santamar??a, J. Catalytic reactors based on porous ceramic membranes. Catal. Today 1999, 51, 377–389, doi:10.1016/S0920-5861(99)00090-5.
[28]  Dittmeyer, R.; H?llein, V.; Daub, K. Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. J. Mol. Catal. A Chem. 2001, 173, 135–184, doi:10.1016/S1381-1169(01)00149-2.
[29]  Gallucci, F.; Paturzo, L.; Fama, A.; Basile, A. Experimental study of the methane steam reforming reaction in a dense Pd/Ag membrane reactor. Ind. Eng. Chem. Res. 2004, 43, 928–933, doi:10.1021/ie030485a.
[30]  Collins, J.; Schwartz, R.W.; Sehgal, R.; Ward, T.L.; Brinker, C.J.; Hagen, G.P.; Udovich, C.A. Catalytic dehydrogenation of propane in hydrogen permselective membrane reactors. Ind. Eng. Chem. Res. 1996, 35, 4398–4405, doi:10.1021/ie960133m.
[31]  Gbenedio, E.; Wu, Z.; Hatim, I.; Kingsbury, B.F.K.; Li, K. A multifunctional Pd/alumina hollow fibre membrane reactor for propane dehydrogenation. Catal. Today 2010, 156, 93–99.
[32]  Menéndez, M.; Herguido, J.; Téllez, C.; Soler, J.; Gimeno, M.P. Two Zone Fluidized Bed Reactor. PCT Appl. Pat. ES2009/070241, 19 June 2008.
[33]  Assabumrungrat, S.; Jhoraleecharnchai, W.; Praserthdam, P.; Goto, S. Kinetics for dehydrogenation of propane on Pt-Sn-K/gamma-Al2O3 catalyst. J. Chem. Eng. Jpn. 2000, 33, 529–532, doi:10.1252/jcej.33.529.
[34]  Salmones, J.; Wang, J.-A.; Galicia, J.A.; Aguilar-Rios, G. H2 reduction behaviors and catalytic performance of bimetallic tin-modified platinum catalysts for propane dehydrogenation. J. Mol. Catal. A Chem. 2002, 184, 203–213.
[35]  Sch?fer, R.; Noack, M.; K?lsch, P.; St?hr, M.; Caro, J. Comparison of different catalysts in the membrane-supported dehydrogenation of propane. Catal. Today 2003, 82, 15–23.
[36]  Chen, M.; Xu, J.; Cao, Y.; He, H.Y.; Fan, F.N.; Zhuang, J.H. Dehydrogenation of propane over In2O3–Al2O3 mixed oxide in the presence of carbon dioxide. J. Catal. 2010, 272, 101–108, doi:10.1016/j.jcat.2010.03.007.
[37]  Wang, J.; Zhang, F.; Hua, W.; Yue, Y.; Gao, Z. Dehydrogenation of propane over MWW-type zeolites supported gallium oxide. Catal. Commun. 2012, 18, 63–67.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133