全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Metabolites  2013 

CASMI—The Small Molecule Identification Process from a Birmingham Perspective

DOI: 10.3390/metabo3020397

Keywords: CASMI, metabolite annotation, metabolite identification, KEGG, ChemSpider, PUTMEDID-LCMS, MetFrag

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Critical Assessment of Small Molecule Identification (CASMI) contest was developed to provide a systematic comparative evaluation of strategies applied for the annotation and identification of small molecules. The authors participated in eleven challenges in both category 1 (to deduce a molecular formula) and category 2 (to deduce a molecular structure) related to high resolution LC-MS data. For category 1 challenges, the PUTMEDID_LCMS workflows provided the correct molecular formula in nine challenges; the two incorrect submissions were related to a larger mass error in experimental data than expected or the absence of the correct molecular formula in a reference file applied in the PUTMEDID_LCMS workflows. For category 2 challenges, MetFrag was applied to construct in silico fragmentation data and compare with experimentally-derived MS/MS data. The submissions for three challenges were correct, and for eight challenges, the submissions were not correct; some submissions showed similarity to the correct structures, while others showed no similarity. The low number of correct submissions for category 2 was a result of applying the assumption that all chemicals were derived from biological samples and highlights the importance of knowing the origin of biological or chemical samples studied and the metabolites expected to be present to define the correct chemical space to search in annotation processes.

References

[1]  Dunn, W.B.; Broadhurst, D.I.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 2011, 40, 387–426.
[2]  Lutz, N.W.; Jonathan, V.S.; Wevers, R.A. Methodologies for Metabolomics: Experimental Strategies and Techniques; Cambridge University Press: New York, NY, USA, 2013.
[3]  Ugarte, M.; Brown, M.; Hollywood, K.A.; Cooper, G.J.; Bishop, P.N.; Dunn, W.B. Metabolomic analysis of rat serum in streptozotocin-induced diabetes and after treatment with oral triethylenetetramine (TETA). Genome Med. 2012, 4, 35, doi:10.1186/gm334.
[4]  Southam, A.; Khanim, F.; Hayden, R.; Michell, R.; Lilly, A.; Gunther, U.; Drayson, M.; Viant, M.; Bunce, C. Lipidomic analysis of acute myeloid leukaemia cell responses to bezafibrate and medroxyprogesterone acetate reveals insights into their anti-leukemic action. Exp. Hematol. 2012, 40, S149–S149.
[5]  Allwood, J.W.; Ellis, D.I.; Heald, J.K.; Goodacre, R.; Mur, L.A. Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant J. 2006, 46, 351–368.
[6]  Hines, A.; Staff, F.J.; Widdows, J.; Compton, R.M.; Falciani, F.; Viant, M.R. Discovery of metabolic signatures for predicting whole organism toxicology. Toxicol. Sci. 2010, 115, 369–378.
[7]  Kenny, L.C.; Broadhurst, D.I.; Dunn, W.; Brown, M.; North, R.A.; McCowan, L.; Roberts, C.; Cooper, G.J.; Kell, D.B.; Baker, P.N. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension 2010, 56, 741–749.
[8]  Robertson, D.G.; Watkins, P.B.; Reily, M.D. Metabolomics in toxicology: preclinical and clinical applications. Toxicol. Sci. 2011, 120 (Suppl 1), S146–S170, doi:10.1093/toxsci/kfq358.
[9]  Brown, M.; Dunn, W.B.; Ellis, D.I.; Goodacre, R.; Handl, J.; Knowles, J.D.; O’Hagan, S.; Spasic, I.; Kell, D.B. A metabolome pipeline: from concept to data to knowledge. Metabolomics 2005, 1, 39–51.
[10]  Roessner, U.; Wagner, C.; Kopka, J.; Trethewey, R.N.; Willmitzer, L. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 2000, 23, 131–142, doi:10.1046/j.1365-313x.2000.00774.x.
[11]  Brown, M.; Dunn, W.B.; Dobson, P.; Patel, Y.; Winder, C.L.; Francis-McIntyre, S.; Begley, P.; Carroll, K.; Broadhurst, D.; Tseng, A.; et al. Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst 2009, 134, 1322–1332, doi:10.1039/b901179j.
[12]  Dunn, W.B.; Erban, A.; Weber, R.J.M.; Creek, D.J.; Brown, M.; Breitling, R.; Hankemeier, T.; Goodacre, R.; Neumann, S.; Kopka, J.; et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 2013, 9, 44–66.
[13]  Brown, M.; Wedge, D.C.; Goodacre, R.; Kell, D.B.; Baker, P.N.; Kenny, L.C.; Mamas, M.A.; Neyses, L.; Dunn, W.B. Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics 2011, 27, 1108–1112, doi:10.1093/bioinformatics/btr079.
[14]  Weber, R.J.M.; Viant, M.R. MI-Pack: Increased confidence of metabolite identification in mass spectra by integrating accurate masses and metabolic pathways. Chemometr. Intell. Lab. 2010, 104, 75–82, doi:10.1016/j.chemolab.2010.04.010.
[15]  Wolf, S.; Schmidt, S.; Muller-Hannemann, M.; Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 2010, 11, 148.
[16]  Creek, D.J.; Jankevics, A.; Burgess, K.E.; Breitling, R.; Barrett, M.P. IDEOM: an Excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics 2012, 28, 1048–1049, doi:10.1093/bioinformatics/bts069.
[17]  Kind, T.; Fiehn, O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 2007, 8, 105.
[18]  Pence, H.E.; Williams, A. ChemSpider: An Online Chemical Information Resource. J. Chem. Education. 2010, 87, 1123–1124, doi:10.1021/ed100697w.
[19]  Pubchem. Available online: http://pubchem.ncbi.nlm.nih.gov/ (accessed on 15 May 2013).
[20]  Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40, D109–D114.
[21]  Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E. HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Res. 2013, 41, D801–D807.
[22]  Zhang, P.; Foerster, H.; Tissier, C.P.; Mueller, L.; Paley, S.; Karp, P.D.; Rhee, S.Y. MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol. 2005, 138, 27–37, doi:10.1104/pp.105.060376.
[23]  Zhu, Z.J.; Schultz, A.W.; Wang, J.; Johnson, C.H.; Yannone, S.M.; Patti, G.J.; Siuzdak, G. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat. Protoc. 2013, 8, 451–460, doi:10.1038/nprot.2013.004.
[24]  Van der Hooft, J.J.; de Vos, R.C.; Mihaleva, V.; Bino, R.J.; Ridder, L.; de Roo, N.; Jacobs, D.M.; van Duynhoven, J.P.; Vervoort, J. Structural elucidation and quantification of phenolic conjugates present in human urine after tea intake. Anal. Chem. 2012, 84, 7263–7271.
[25]  Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747–751, doi:10.1097/01.ftd.0000179845.53213.39.
[26]  Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010, 45, 703–714, doi:10.1002/jms.1777.
[27]  Highchem-MassFrontier. Available online: http://www.highchem.com/index.php/massfrontier/ (accessed on 15 May 2013).
[28]  Sumner, L.W.; Amberg, A.; Barrett, D.; Beger, R.; Beale, M.H.; Daykin, C.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221.
[29]  Herrgard, M.J.; Swainston, N.; Dobson, P.; Dunn, W.B.; Arga, K.Y.; Arvas, M.; Bluthgen, N.; Borger, S.; Costenoble, R.; Heinemann, M.; et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 2008, 26, 1155–1160, doi:10.1038/nbt1492.
[30]  Dal’Molin, C.G.; Quek, L.E.; Palfreyman, R.W.; Brumbley, S.M.; Nielsen, L.K. C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol. 2010, 154, 1871–1885, doi:10.1104/pp.110.166488.
[31]  Thiele, I.; Swainston, N.; Fleming, R.M.; Hoppe, A.; Sahoo, S.; Aurich, M.K.; Haraldsdottir, H.; Mo, M.L.; Rolfsson, O.; Stobbe, M.D.; et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 2013, 31, 419–425.
[32]  Kanehisa, M. The KEGG database. Novartis Found. Symp. 2002, 247, 91–101, doi:10.1002/0470857897.ch8.
[33]  NIST 12 MS/MS Database and Search Program. Available online: http://chemdata.nist.gov/mass-spc/msms-search/ (accessed on 15 May 2013).
[34]  Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221.
[35]  PUTMEDID-LCMS. Available online: http://www.mcisb.org/resources/putmedid.html/ (accessed on 15 May 2013).
[36]  MetFrag - In silico fragmentation for computer assisted identification of metabolite mass spectra. Available online: http://msbi.ipb-halle.de/MetFrag/ (accessed on 15 May 2013).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133