全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Microarrays  2013 

Microarray for Identification of the Chiropteran Host Species of Rabies Virus in Canada

DOI: 10.3390/microarrays2020153

Keywords: bats, microarray, rabies, Chiroptera, COI

Full-Text   Cite this paper   Add to My Lib

Abstract:

Species identification through genetic barcoding can augment traditional taxonomic methods, which rely on morphological features of the specimen. Such approaches are especially valuable when specimens are in poor condition or comprise very limited material, a situation that often applies to chiropteran (bat) specimens submitted to the Canadian Food Inspection Agency for rabies diagnosis. Coupled with phenotypic plasticity of many species and inconclusive taxonomic keys, species identification using only morphological traits can be challenging. In this study, a microarray assay with associated PCR of the mitochondrial cytochrome c oxidase subunit I (COI) gene was developed for differentiation of 14 bat species submitted to the Canadian Food Inspection Agency from 1985–2012 for rabies diagnosis. The assay was validated with a reference collection of DNA from 153 field samples, all of which had been barcoded previously. The COI gene from 152 samples which included multiple specimens of each target species were successfully amplified by PCR and accurately identified by the microarray. One sample that was severely decomposed failed to amplify with PCR primers developed in this study, but amplified weakly after switching to alternate primers and was accurately typed by the microarray. Thus, the chiropteran microarray was able to accurately differentiate between the 14 species of Canadian bats targeted. This PCR and microarray assay would allow unequivocal identification to species of most, if not all, bat specimens submitted for rabies diagnosis in Canada.

References

[1]  Arnason, U.; Adegoke, J.A.; Bodin, K.; Born, E.W.; Esa, Y.B.; Gullberg, A.; Nilsson, M.; Short, R.V.; Xu, X.; Janke, A. Mammalian mitogenomic relationships and the root of the eutherian tree. Proc. Natl. Acad. Sci. USA 2002, 99, 8151–8156, doi:10.1073/pnas.102164299.
[2]  Frézal, L.; Leblois, R. Four years of DNA barcoding: Current advances and prospects. Infect. Genet. Evol. 2008, 8, 727–736, doi:10.1016/j.meegid.2008.05.005.
[3]  Hajibabaei, M.; Singer, G.A.C.; Hebert, P.D.N.; Hickey, D.A. DNA barcoding: How it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 2007, 23, 167–172, doi:10.1016/j.tig.2007.02.001.
[4]  Tobe, S.S.; Kitchener, A.C.; Linacre, A.M.T. Reconstructing mammalian phylogenies: A detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes. PLoS ONE 2010, 5, e14156, doi:10.1371/journal.pone.0014156.
[5]  Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; de Waard, J.R. Biological identification through DNA barcodes. Proc. R. Soc. Lond. B 2003, 270, 313–321, doi:10.1098/rspb.2002.2218.
[6]  Hebert, P.D.N.; Ratnasingham, S.; de Waard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B 2003, 270, S96–S99, doi:10.1098/rsbl.2003.0025.
[7]  Ratnasingham, S.; Hebert, P.D.N. BOLD: The barcode of life data system. Mol. Ecol. Notes 2007, 7, 355–364.
[8]  Clare, E.I.; Lim, B.K.; Engstrom, M.D.; Eger, J.I.; Hebert, P.D.N. DNA barcoding of Neotropical bats: Species identification and discovery within Guyana. Mol. Ecol. Notes 2007, 7, 184–190, doi:10.1111/j.1471-8286.2006.01657.x.
[9]  Mayer, F.; Dietz, C.; Kiefer, A. Molecular species identification boosts bat diversity. Front. Zool. 2007, 4, 4, doi:10.1186/1742-9994-4-4.
[10]  Jones, K.E.; Bininda-Emonds, O.; Gittleman, J. Bats, clocks, and rocks: Diversification patterns in chiroptera. Evolution 2005, 59, 2243–2255.
[11]  Teeling, E.C.; Springer, M.S.; Madsen, O.; Bates, P.; O’Brien, S.J.; Murphy, W.J. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 2005, 307, 580–584, doi:10.1126/science.1105113.
[12]  Tudge, C. The Variety of Life: A Survey and a Celebration of All the Creatures that Have Ever Lived; Oxford University Press: Oxford, UK, 2000.
[13]  Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006, 19, 531–545, doi:10.1128/CMR.00017-06.
[14]  Wibbelt, G.; Moore, M.S.; Schountz, T.; Voigt, C.C. Emerging diseases in Chiroptera. Why bats? Biol. Lett. 2010, 6, 438–440, doi:10.1098/rsbl.2010.0267.
[15]  Banyard, A.C.; Hayman, D.; Johnson, N.; McElhinney, L.; Fooks, A.R. Bats and lyssaviruses. Adv. Virus Res. 2011, 79, 239–289, doi:10.1016/B978-0-12-387040-7.00012-3.
[16]  Wong, S.; Lau, S.; Woo, P.; Yuen, K.Y. Bats as a continuing source of emerging infections in humans. Rev. Med. Virol. 2007, 17, 67–91, doi:10.1002/rmv.520.
[17]  Kuzmin, I.V.; Rupprecht, C.E. Bat rabies. In Rabies, 2nd ed.; Jackson, A.C., Wunner, W.H., Eds.; Academic Press: San Diego, CA, USA, 2007; pp. 259–307.
[18]  Hanlon, C.A.; Niezgoda, M.; Rupprecht, C.E. Rabies in terrestrial animals. In Rabies, 2nd ed.; Jackson, A.C., Wunner, W.H., Eds.; Academic Press: San Diego, CA, USA, 2007; pp. 201–258.
[19]  Nadin-Davis, S.A.; Fehlner-Gardiner, C. Lyssaviruses: Current trends. Adv. Virus Res. 2008, 71, 207–250, doi:10.1016/S0065-3527(08)00005-5.
[20]  Nadin-Davis, S.A.; Huang, W.; Armstrong, J.; Casey, G.A.; Bahloul, C.; Tordo, N.; Wandeler, A.I. Antigenic and genetic divergence of rabies viruses from bat species indigenous to Canada. Virus Res. 2001, 74, 139–156, doi:10.1016/S0168-1702(00)00259-8.
[21]  De Serres, G.; Dallaire, F.; C?te, M.; Skowronski, D.M. Bat rabies in the United States and Canada from 1950 through 2007: Human cases with and without bat contact. Clin. Infect. Dis. 2008, 46, 1329–1337, doi:10.1086/586745.
[22]  Jackson, A.C.; Fenton, M.B. Human rabies and bat bites. Lancet 2001, 357, doi:10.1016/S0140-6736(00)04852-2.
[23]  WHO Fact Sheet. “Rabies”. Available online: http://www.who.int/mediacentre/factsheets/fs099/en/ (accessed on 21 May 2013).
[24]  Kuzmin, I.V.; Shi, M.; Orciari, L.A.; Yager, P.A.; Velasco-Villa, A.; Kuzmina, N.A.; Streiker, D.G.; Bergman, D.L.; Rupprecht, C.E. Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001–2009. PLoS Pathog. 2012, 8, e1002786, doi:10.1371/journal.ppat.1002786.
[25]  Nagorsen, D.W.; Brigham, R.M. Bats of British Columbia. Royal British Columbia Museum Handbook Series; UBC Press: Vancouver, BC, Canada, 1993.
[26]  Adams, R.A. Bats of the Rocky Mountain West: Natural History, Ecology, and Conservation. Boulder; University Press of Colorado: Vancouver, BC, Canada, 2003.
[27]  National Audubon Society. National Audubon Society Field Guide to North American Mammals; Knopf Doubleday Publishing Group: New York, NY, USA, 1996.
[28]  Environment Canada and Canadian Wildlife Federation. Bats: Hinterland Who’s Who. Available online: http://www.hww.ca/en/species/mammals/bats.html (accessed on 28 February 2013).
[29]  Nadin-Davis, S.A.; Guerrero, E.; Knowles, M.K.; Feng, Y. DNA barcoding facilitates bat species identification for improved surveillance of bat-associated rabies across Canada. Open J. Zool. 2012, 5, 27–37, doi:10.2174/1874336601205010027.
[30]  Carnieli, P., Jr.; de Oliveira, F.W.; Castilho, J.G.; Brand?o, P.E.; Carrieri, M.L.; Kotait, I. Species determination of Brazilian mammals implicated in the epidemiology of rabies based on the control region of mitochondrial DNA. Braz. J. Infect. Dis. 2008, 12, 462–465, doi:10.1590/S1413-86702008000600002.
[31]  Harris, S.L.; Johnson, N.; Brookes, S.M.; Hutson, A.M.; Fooks, A.R.; Jones, G. The application of genetic markers for EBLV surveillance in European bat species. Dev. Biol. 2008, 131, 347–363.
[32]  Schena, M.; Heller, R.A.; Theriault, T.P.; Konrad, K.; Lachenmeier, E.; Davis, R.W. Microarrays: Biotechnology’s discovery platform for functional genomics. Trends Biotech. 1998, 16, 301–306, doi:10.1016/S0167-7799(98)01219-0.
[33]  Garaizar, J.; Rementeria, A.; Porwollik, S. DNA microarray technology: A new tool for the epidemiological typing of bacterial pathogens? FEMS Immunol. Med. Microbiol. 2006, 47, 178–189, doi:10.1111/j.1574-695X.2006.00081.x.
[34]  Pfunder, M.; Holzgang, O.; Frey, J.E. Development of microarray-based diagnostics of voles and shrews for use in biodiversity monitoring studies, and evaluation of mitochondrial cytochrome oxidase I vs. cytochrome b as genetic markers. Mol. Ecol. 2004, 13, 1277–1286, doi:10.1111/j.1365-294X.2004.02126.x.
[35]  Hajibabaei, M.; Singer, G.A.; Clare, E.L.; Hebert, P.D. Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biol. 2007, 13, doi:10.1186/1741-7007-5-24.
[36]  Deblauwe, I.; de Witte, J.C.; de Deken, G.; de Deken, R.; Madder, M.; van Erk, S.; Hoza, F.A.; Lathouwers, D.; Geysen, D. A new tool for the molecular identification of Culicoides species of the Obsoletus group: The glass slide microarray approach. Med. Vet. Entomol. 2012, 26, 83–91.
[37]  Kochzius, M.; Seidel, C.; Antoniou, A.; Botla, S.K.; Campo, D.; Cariani, A.; Vazquez, E.G.; Hauschild, J.; Hervet, C.; Hj?rleifsdottir, S.; et al. Identifying fishes through DNA barcodes and microarrays. PLoS ONE 2010, 5, e12620, doi:10.1371/journal.pone.0012620.
[38]  Chung, I.; Yoo, H.S.; Eah, J.; Yoon, H.; Jung, J.; Hwang, S.Y.; Kim, C. A DNA microarray for identification of selected Korean birds based on mitochondrial Cytochrome c oxidase 1 gene sequences. Mol. Cells 2010, 30, 295–301.
[39]  Summerbell, R.C.; Lévesque, C.A.; Seifert, K.A.; Bovers, M.; Fell, J.W.; Diaz, M.R.; Boekhout, T.; de Hoog, G.S.; Stalpers, J.; Crous, P.W. Microcoding: The second step in DNA barcoding. Phil. Trans. Royal Soc. Lond. 2005, 360, 1897–1903, doi:10.1098/rstb.2005.1721.
[40]  Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948, doi:10.1093/bioinformatics/btm404.
[41]  Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882, doi:10.1093/nar/25.24.4876.
[42]  OligoAnalyzer?. Available online: https://www.idtdna.com/analyzer/Applications/OligoAnalyzer/ (accessed on 28 February 2013).
[43]  Desloire, S.; Moro, C.V.; Chauve, C.; Zenner, L. Comparison of four methods of extracting DNA from D. gallinae (Acari: Dermanyssidae). Vet. Res. 2006, 37, 725–732, doi:10.1051/vetres:2006031.
[44]  Lung, O.; Fisher, M.; Beeston, A.; Hughes, K.B.; Clavijo, A.; Goolia, M.; Pasick, J.; Mauro, W.; Deregt, D. Multiplex RT-PCR detection and microarray typing of vesicular disease viruses. J. Virol. Methods 2011, 175, 236–245, doi:10.1016/j.jviromet.2011.05.023.
[45]  Meusnier, I.; Singer, G.A.; Landry, J.F.; Hickey, D.A.; Hebert, P.D.; Hajibabaei, M. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 2008, 12, doi:10.1186/1471-2164-9-214.
[46]  Zinck, J.M.; Duffield, D.A.; Ormsbee, P.C. Primers for identification and polymorphism assessment of Vespertilionid bats in the Pacific Northwest. Mol. Ecol. Notes 2004, 4, 239–242, doi:10.1111/j.1471-8286.2004.00629.x.
[47]  Nadin-Davis, S.A.; Feng, Y.; Mousse, D.; Wandeler, A.I.; Aris-Brosou, S. Spatial and temporal dynamics of rabies virus variants in big brown bat populations across Canada: Footprints of an emerging zoonosis. Mol. Ecol. 2010, 19, 2120–2136, doi:10.1111/j.1365-294X.2010.04630.x.
[48]  Streicker, D.G.; Turmelle, A.S.; Vonhof, M.J.; Kuzmin, I.V.; McCracken, G.F.; Rupprecht, C.E. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 2010, 329, 676–679, doi:10.1126/science.1188836.
[49]  Constantine, D.G. An updated list of rabies-infected bats in North America. J. Wildl. Dis. 1979, 15, 347–349.
[50]  Sodré, M.M.; da Gama, A.R.; de Almeida, M.F. Updated list of bat species positive for rabies in Brazil. Rev. Inst. Med. Trop. S?o Paulo 2010, 52, 75–81.
[51]  Spizz, G.; Young, L.; Yasmin, R.; Chen, Z.; Lee, T.; Mahoney, D.; Zhang, X.; Mouchka, G.; Thomas, B.; Honey, W.; et al. Rheonix CARD? technology: An innovative and fully automated molecular diagnostic device. Point Care 2012, 11, 42–51.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413